Close Menu
    DevStackTipsDevStackTips
    • Home
    • News & Updates
      1. Tech & Work
      2. View All

      CodeSOD: A Unique Way to Primary Key

      July 22, 2025

      BrowserStack launches Figma plugin for detecting accessibility issues in design phase

      July 22, 2025

      Parasoft brings agentic AI to service virtualization in latest release

      July 22, 2025

      Node.js vs. Python for Backend: 7 Reasons C-Level Leaders Choose Node.js Talent

      July 21, 2025

      The best CRM software with email marketing in 2025: Expert tested and reviewed

      July 22, 2025

      This multi-port car charger can power 4 gadgets at once – and it’s surprisingly cheap

      July 22, 2025

      I’m a wearables editor and here are the 7 Pixel Watch 4 rumors I’m most curious about

      July 22, 2025

      8 ways I quickly leveled up my Linux skills – and you can too

      July 22, 2025
    • Development
      1. Algorithms & Data Structures
      2. Artificial Intelligence
      3. Back-End Development
      4. Databases
      5. Front-End Development
      6. Libraries & Frameworks
      7. Machine Learning
      8. Security
      9. Software Engineering
      10. Tools & IDEs
      11. Web Design
      12. Web Development
      13. Web Security
      14. Programming Languages
        • PHP
        • JavaScript
      Featured

      The Intersection of Agile and Accessibility – A Series on Designing for Everyone

      July 22, 2025
      Recent

      The Intersection of Agile and Accessibility – A Series on Designing for Everyone

      July 22, 2025

      Zero Trust & Cybersecurity Mesh: Your Org’s Survival Guide

      July 22, 2025

      Execute Ping Commands and Get Back Structured Data in PHP

      July 22, 2025
    • Operating Systems
      1. Windows
      2. Linux
      3. macOS
      Featured

      A Tomb Raider composer has been jailed — His legacy overshadowed by $75k+ in loan fraud

      July 22, 2025
      Recent

      A Tomb Raider composer has been jailed — His legacy overshadowed by $75k+ in loan fraud

      July 22, 2025

      “I don’t think I changed his mind” — NVIDIA CEO comments on H20 AI GPU sales resuming in China following a meeting with President Trump

      July 22, 2025

      Galaxy Z Fold 7 review: Six years later — Samsung finally cracks the foldable code

      July 22, 2025
    • Learning Resources
      • Books
      • Cheatsheets
      • Tutorials & Guides
    Home»Development»Machine Learning»Mitigating Hallucinations in Large Vision-Language Models: A Latent Space Steering Approach

    Mitigating Hallucinations in Large Vision-Language Models: A Latent Space Steering Approach

    April 2, 2025

    Hallucination remains a significant challenge in deploying Large Vision-Language Models (LVLMs), as these models often generate text misaligned with visual inputs. Unlike hallucination in LLMs, which arises from linguistic inconsistencies, LVLMs struggle with cross-modal discrepancies, leading to inaccurate image descriptions or incorrect spatial relationships. These models leverage vision encoders, such as CLIP, alongside pretrained text decoders to map visual information into language. Despite their strong performance in tasks like image captioning, visual question answering, and medical treatment planning, LVLMs remain prone to hallucination, which limits their real-world applicability. The issue stems from various factors, including statistical biases in pretraining, an over-reliance on language priors, and feature learning biases. However, existing research often fails to account for the unique architecture of LVLMs, treating their hallucination mechanisms similarly to those in LLMs despite the distinct role of visual input processing.

    To mitigate hallucination in LVLMs, researchers have explored both training-based and training-free approaches. Training-based solutions focus on enhancing model alignment with ground truth through additional supervision, but they require extensive datasets and computational resources. In contrast, training-free methods, such as self-feedback correction and auxiliary model integration, have gained popularity due to their efficiency. Some approaches refine the text decoding process to reduce inconsistencies, but these often fail to address hallucination from the visual encoder. As LVLMs evolve, developing targeted solutions that consider visual and textual components will be crucial for improving their robustness and reliability in real-world applications.

    Researchers from Stanford University investigate the mechanisms behind hallucinations in LVLMs, focusing on the instability of vision encoders and their impact on text decoders. They introduce Visual and Textual Intervention (VTI), a test-time technique stabilizing vision features by modifying latent space representations. Unlike traditional smoothing methods, VTI pre-computes transformation directions from perturbed images and applies them to new queries, reducing hallucinations without extra training costs. Experimental results show that VTI consistently outperforms baseline approaches across multiple benchmarks, emphasizing the importance of vision feature stability in mitigating hallucinations and improving LVLM reliability.

    LVLMs comprise a vision encoder and a text decoder, where unstable vision features can lead to hallucinations. Researchers identify that perturbations in vision embeddings cause inconsistencies in generated text. To address this, they propose VTI, which pre-computes stable feature shifts using Principal Component Analysis (PCA) on perturbed image embeddings. These shifts are then applied to new queries, improving feature stability without additional training. VTI also adjusts text decoder embeddings to reduce hallucinations. Experiments confirm its effectiveness in mitigating hallucinations while maintaining computational efficiency across diverse tasks and datasets.

    The study evaluates the effectiveness of VTI in mitigating hallucinations in LVLMs. Using 80 COCO image-text pairs, the method generalizes across tasks and datasets. Experiments on POPE, CHAIR, and MMHAL-Bench demonstrate VTI’s superiority over baseline methods like OPERA and VCD. Results show that visual intervention stabilizes feature representations while textual intervention enhances image attention. Their combination improves accuracy while maintaining text richness. Additionally, an ablation study on α and β confirms their impact on reducing hallucinations. VTI effectively addresses multimodal hallucinations without compromising content quality.

    In conclusion, the study presents VTI as an effective method to mitigate hallucinations in LVLMs. Unlike hallucinations in LLMs, those in LVLMs stem from misalignments between visual inputs and textual outputs, often due to separately pre-trained image encoders and text decoders. VTI stabilizes vision features by adjusting latent space representations during inference, requiring no additional training. Experimental results confirm its superiority over baseline methods in reducing hallucinations while maintaining output quality. These findings emphasize the importance of robust feature representation, paving the way for more accurate and reliable LVLM applications in real-world settings.


    Check out the Paper. All credit for this research goes to the researchers of this project. Also, feel free to follow us on Twitter and don’t forget to join our 85k+ ML SubReddit.

    🔥 [Register Now] miniCON Virtual Conference on OPEN SOURCE AI: FREE REGISTRATION + Certificate of Attendance + 3 Hour Short Event (April 12, 9 am- 12 pm PST) + Hands on Workshop [Sponsored]

    The post Mitigating Hallucinations in Large Vision-Language Models: A Latent Space Steering Approach appeared first on MarkTechPost.

    Source: Read More 

    Facebook Twitter Reddit Email Copy Link
    Previous ArticleUsing Large Language Models on Amazon Bedrock for multi-step task execution
    Next Article Nomic Open Sources State-of-the-Art Multimodal Embedding Model

    Related Posts

    Machine Learning

    How to Evaluate Jailbreak Methods: A Case Study with the StrongREJECT Benchmark

    July 22, 2025
    Machine Learning

    Boolformer: Symbolic Regression of Logic Functions with Transformers

    July 22, 2025
    Leave A Reply Cancel Reply

    For security, use of Google's reCAPTCHA service is required which is subject to the Google Privacy Policy and Terms of Use.

    Continue Reading

    Perfect Pagination: Unlock UI Control with onEachSide

    Development

    T-Mobile will give you the iPhone 16e for free with no trade-in – here’s how to get one

    News & Updates

    What is Individual Therapy and How Does It Work?

    Web Development

    CVE-2025-4239 – PCMan FTP Server Buffer Overflow

    Common Vulnerabilities and Exposures (CVEs)

    Highlights

    CVE-2025-47202 – Samsung Exynos RRC Out-of-Bounds Write Vulnerability

    July 7, 2025

    CVE ID : CVE-2025-47202

    Published : July 7, 2025, 4:15 p.m. | 1 hour, 8 minutes ago

    Description : In RRC in Samsung Mobile Processor, Wearable Processor, and Modem Exynos 980, 990, 850, 1080, 2100, 1280, 2200, 1330, 1380, 1480, 2400, 1580, 9110, W920, W930, W1000, Modem 5123, Modem 5300, and Modem 5400, the lack of a length check leads to out-of-bounds writes.

    Severity: 0.0 | NA

    Visit the link for more details, such as CVSS details, affected products, timeline, and more…

    Universal Design Principles Supporting Operable Content – Low Physical Effort

    April 17, 2025

    Inclusive Dark Mode: Designing Accessible Dark Themes For All Users

    April 15, 2025

    CVE-2025-48998 – DataEase Arbitrary File Deserialization

    June 3, 2025
    © DevStackTips 2025. All rights reserved.
    • Contact
    • Privacy Policy

    Type above and press Enter to search. Press Esc to cancel.