Close Menu
    DevStackTipsDevStackTips
    • Home
    • News & Updates
      1. Tech & Work
      2. View All

      CodeSOD: A Unique Way to Primary Key

      July 22, 2025

      BrowserStack launches Figma plugin for detecting accessibility issues in design phase

      July 22, 2025

      Parasoft brings agentic AI to service virtualization in latest release

      July 22, 2025

      Node.js vs. Python for Backend: 7 Reasons C-Level Leaders Choose Node.js Talent

      July 21, 2025

      The best CRM software with email marketing in 2025: Expert tested and reviewed

      July 22, 2025

      This multi-port car charger can power 4 gadgets at once – and it’s surprisingly cheap

      July 22, 2025

      I’m a wearables editor and here are the 7 Pixel Watch 4 rumors I’m most curious about

      July 22, 2025

      8 ways I quickly leveled up my Linux skills – and you can too

      July 22, 2025
    • Development
      1. Algorithms & Data Structures
      2. Artificial Intelligence
      3. Back-End Development
      4. Databases
      5. Front-End Development
      6. Libraries & Frameworks
      7. Machine Learning
      8. Security
      9. Software Engineering
      10. Tools & IDEs
      11. Web Design
      12. Web Development
      13. Web Security
      14. Programming Languages
        • PHP
        • JavaScript
      Featured

      The Intersection of Agile and Accessibility – A Series on Designing for Everyone

      July 22, 2025
      Recent

      The Intersection of Agile and Accessibility – A Series on Designing for Everyone

      July 22, 2025

      Zero Trust & Cybersecurity Mesh: Your Org’s Survival Guide

      July 22, 2025

      Execute Ping Commands and Get Back Structured Data in PHP

      July 22, 2025
    • Operating Systems
      1. Windows
      2. Linux
      3. macOS
      Featured

      A Tomb Raider composer has been jailed — His legacy overshadowed by $75k+ in loan fraud

      July 22, 2025
      Recent

      A Tomb Raider composer has been jailed — His legacy overshadowed by $75k+ in loan fraud

      July 22, 2025

      “I don’t think I changed his mind” — NVIDIA CEO comments on H20 AI GPU sales resuming in China following a meeting with President Trump

      July 22, 2025

      Galaxy Z Fold 7 review: Six years later — Samsung finally cracks the foldable code

      July 22, 2025
    • Learning Resources
      • Books
      • Cheatsheets
      • Tutorials & Guides
    Home»Development»Machine Learning»Google AI Introduces Ironwood: A Google TPU Purpose-Built for the Age of Inference

    Google AI Introduces Ironwood: A Google TPU Purpose-Built for the Age of Inference

    April 10, 2025
    Google AI Introduces Ironwood: A Google TPU Purpose-Built for the Age of Inference

    At the 2025 Google Cloud Next event, Google introduced Ironwood, its latest generation of Tensor Processing Units (TPUs), designed specifically for large-scale AI inference workloads. This release marks a strategic shift toward optimizing infrastructure for inference, reflecting the increasing operational focus on deploying AI models rather than training them.

    Ironwood is the seventh generation in Google’s TPU architecture and brings substantial improvements in compute performance, memory capacity, and energy efficiency. Each chip delivers a peak throughput of 4,614 teraflops (TFLOPs) and includes 192 GB of high-bandwidth memory (HBM), supporting bandwidths up to 7.4 terabits per second (Tbps). Ironwood can be deployed in configurations of 256 or 9,216 chips, with the larger cluster offering up to 42.5 exaflops of compute, making it one of the most powerful AI accelerators in the industry.

    Unlike previous TPU generations that balanced training and inference workloads, Ironwood is engineered specifically for inference. This reflects a broader industry trend where inference, particularly for large language and generative models, is emerging as the dominant workload in production environments. Low-latency and high-throughput performance are critical in such scenarios, and Ironwood is designed to meet those demands efficiently.

    A key architectural advancement in Ironwood is the enhanced SparseCore, which accelerates sparse operations commonly found in ranking and retrieval-based workloads. This targeted optimization reduces the need for excessive data movement across the chip and improves both latency and power consumption for specific inference-heavy use cases.

    Ironwood also improves energy efficiency significantly, offering more than double the performance-per-watt compared to its predecessor. As AI model deployment scales, energy usage becomes an increasingly important constraint—both economically and environmentally. The improvements in Ironwood contribute toward addressing these challenges in large-scale cloud infrastructure.

    The TPU is integrated into Google’s broader AI Hypercomputer framework, a modular compute platform combining high-speed networking, custom silicon, and distributed storage. This integration simplifies the deployment of resource-intensive models, enabling developers to serve real-time AI applications without extensive configuration or tuning.

    This launch also signals Google’s intent to remain competitive in the AI infrastructure space, where companies such as Amazon and Microsoft are developing their own in-house AI accelerators. While industry leaders have traditionally relied on GPUs, particularly from Nvidia, the emergence of custom silicon solutions is reshaping the AI compute landscape.

    Ironwood’s release reflects the growing maturity of AI infrastructure, where efficiency, reliability, and deployment readiness are now as important as raw compute power. By focusing on inference-first design, Google aims to meet the evolving needs of enterprises running foundation models in production—whether for search, content generation, recommendation systems, or interactive applications.

    In summary, Ironwood represents a targeted evolution in TPU design. It prioritizes the needs of inference-heavy workloads with enhanced compute capabilities, improved efficiency, and tighter integration with Google Cloud’s infrastructure. As AI transitions into an operational phase across industries, hardware purpose-built for inference will become increasingly central to scalable, responsive, and cost-effective AI systems.

    .


    Check out the Technical details. All credit for this research goes to the researchers of this project. Also, feel free to follow us on Twitter and don’t forget to join our 85k+ ML SubReddit.

    The post Google AI Introduces Ironwood: A Google TPU Purpose-Built for the Age of Inference appeared first on MarkTechPost.

    Source: Read More 

    Facebook Twitter Reddit Email Copy Link
    Previous ArticleReduce ML training costs with Amazon SageMaker HyperPod
    Next Article MircoNN: An On-device Disk Resident Updatable Vector Database

    Related Posts

    Machine Learning

    How to Evaluate Jailbreak Methods: A Case Study with the StrongREJECT Benchmark

    July 22, 2025
    Machine Learning

    Boolformer: Symbolic Regression of Logic Functions with Transformers

    July 22, 2025
    Leave A Reply Cancel Reply

    For security, use of Google's reCAPTCHA service is required which is subject to the Google Privacy Policy and Terms of Use.

    Continue Reading

    CVE-2025-5508 – TOTOLINK A3002RU Cross-Site Scripting Vulnerability

    Common Vulnerabilities and Exposures (CVEs)

    CVE-2024-13858 – Buddyboss Platform Stored Cross-Site Scripting Vulnerability

    Common Vulnerabilities and Exposures (CVEs)

    This Marshall Bluetooth speaker I tested sounds better than audio systems twice the price

    News & Updates

    CVE-2024-13451 – Bit Form Contact Form Sensitive Information Exposure

    Common Vulnerabilities and Exposures (CVEs)

    Highlights

    News & Updates

    Microsoft unveils big Windows Recall update — now showcases your most used apps and websites

    June 24, 2025

    Windows 11 is getting an updated Recall app soon that includes a new homepage interface,…

    CVE-2025-37825 – “Nvidia Nvmet Out-of-Bounds Access Vulnerability”

    May 8, 2025

    Windows 11 update KB5060829 triggering misleading firewall error

    July 3, 2025

    CVE-2025-6665 – Code-projects Inventory Management System SQL Injection Vulnerability

    June 25, 2025
    © DevStackTips 2025. All rights reserved.
    • Contact
    • Privacy Policy

    Type above and press Enter to search. Press Esc to cancel.