Close Menu
    DevStackTipsDevStackTips
    • Home
    • News & Updates
      1. Tech & Work
      2. View All

      CodeSOD: A Unique Way to Primary Key

      July 22, 2025

      BrowserStack launches Figma plugin for detecting accessibility issues in design phase

      July 22, 2025

      Parasoft brings agentic AI to service virtualization in latest release

      July 22, 2025

      Node.js vs. Python for Backend: 7 Reasons C-Level Leaders Choose Node.js Talent

      July 21, 2025

      The best CRM software with email marketing in 2025: Expert tested and reviewed

      July 22, 2025

      This multi-port car charger can power 4 gadgets at once – and it’s surprisingly cheap

      July 22, 2025

      I’m a wearables editor and here are the 7 Pixel Watch 4 rumors I’m most curious about

      July 22, 2025

      8 ways I quickly leveled up my Linux skills – and you can too

      July 22, 2025
    • Development
      1. Algorithms & Data Structures
      2. Artificial Intelligence
      3. Back-End Development
      4. Databases
      5. Front-End Development
      6. Libraries & Frameworks
      7. Machine Learning
      8. Security
      9. Software Engineering
      10. Tools & IDEs
      11. Web Design
      12. Web Development
      13. Web Security
      14. Programming Languages
        • PHP
        • JavaScript
      Featured

      The Intersection of Agile and Accessibility – A Series on Designing for Everyone

      July 22, 2025
      Recent

      The Intersection of Agile and Accessibility – A Series on Designing for Everyone

      July 22, 2025

      Zero Trust & Cybersecurity Mesh: Your Org’s Survival Guide

      July 22, 2025

      Execute Ping Commands and Get Back Structured Data in PHP

      July 22, 2025
    • Operating Systems
      1. Windows
      2. Linux
      3. macOS
      Featured

      A Tomb Raider composer has been jailed — His legacy overshadowed by $75k+ in loan fraud

      July 22, 2025
      Recent

      A Tomb Raider composer has been jailed — His legacy overshadowed by $75k+ in loan fraud

      July 22, 2025

      “I don’t think I changed his mind” — NVIDIA CEO comments on H20 AI GPU sales resuming in China following a meeting with President Trump

      July 22, 2025

      Galaxy Z Fold 7 review: Six years later — Samsung finally cracks the foldable code

      July 22, 2025
    • Learning Resources
      • Books
      • Cheatsheets
      • Tutorials & Guides
    Home»Development»Machine Learning»LightPROF: A Lightweight AI Framework that Enables Small-Scale Language Models to Perform Complex Reasoning Over Knowledge Graphs (KGs) Using Structured Prompts

    LightPROF: A Lightweight AI Framework that Enables Small-Scale Language Models to Perform Complex Reasoning Over Knowledge Graphs (KGs) Using Structured Prompts

    April 12, 2025

    Large Language Models (LLMs) have revolutionized natural language processing, with abilities on complex zero-shot tasks through extensive training data and vast parameters. However, LLMs often struggle with knowledge-intensive tasks due to limited task-specific prior knowledge and understanding capabilities. LLMs need access to reliable and continuously updated knowledge bases for effective reasoning, with Knowledge Graphs (KGs) being ideal candidates due to their structured semantic framework. Current approaches to LLM reasoning on KGs encounter two obstacles: representing KG content as extensive text fails to convey rich logical relationships within the graph structure, and retrieval and reasoning processes demand numerous LLM calls and substantial reasoning power.

    Prompt engineering has emerged as a critical technique for expanding LLM capabilities across various applications without modifying model parameters. The field has evolved from simple zero-shot and few-shot prompts to more complex approaches like Chain-of-Thought (CoT), Tree-of-Thoughts (ToT), and Graph-of-Thoughts (GoT). KG-based LLM reasoning has gained traction as KGs provide explicit, structured knowledge that enhances LLMs’ knowledge awareness with clear logical structures. More flexible solutions like KAPING, KGGPT, StructGPT, ToG, and KnowledgeNavigator construct LLM prompts using KG factual information with various techniques like semantic similarity retrieval, multi-step reasoning frameworks, and beam search on KGs to enhance reasoning capabilities.

    Researchers from Beijing University of Posts and Telecommunications, Hangzhou Dianzi University, Singapore Management University, National University of Singapore, Institute of Computing Technology at Chinese Academy of Sciences, and Xi’an Jiaotong University have proposed LightPROF, a Lightweight and efficient Prompt learning-ReasOning Framework. The RetrieveEmbed-Reason framework enables small-scale LLMs to perform stable retrieval and efficient reasoning on KGs. It contains three core components: Retrieval, Embedding, and Reasoning modules. The Retrieval uses relations as fundamental retrieval units and limits the scope based on question semantics, the Embedding uses a compact Transformer-based Knowledge Adapter, and the Reasoning combines embedded representation vectors with carefully designed prompts. LightPROF supports various open-source LLMs and KGs while only requiring Knowledge Adapter tuning during training.

    LightPROF is evaluated on two Freebase-based public datasets: WebQuestionsSP (WebQSP) and ComplexWebQuestions (CWQ). WebQSP serves as a benchmark with fewer questions (4,737) but a larger KG, and CWQ is designed for complex KG question answering with 34,689 question-answer pairs built upon WebQSP. Performance is measured using match accuracy (Hits@1), which evaluates whether the model’s top answer is correct. LightPROF is compared against three categories of baseline methods: full fine-tuning approaches (including KV-Mem, EmbedKGQA, TransferNet, NSM, etc), vanilla LLM methods (featuring LLaMa series models), and LLM+KGs methods (such as StructGPT, ToG, KnowledgeNavigator, and AgentBench).

    LightPROF significantly outperforms state-of-the-art models, achieving 83.7% accuracy on the WebQSP dataset and 59.3% on the more challenging CWQ dataset. These results validate LightPROF’s effectiveness in handling multi-hop and complex reasoning challenges in KG question answering. When integrating different LLMs within the framework, LightPROF consistently enhances performance regardless of the baseline capabilities of the original models. This plug-and-play integration strategy eliminates the need for costly LLM fine-tuning. Efficiency evaluations against StructGPT reveal LightPROF’s superior resource utilization, with a 30% reduction in processing time, 98% reduction in input token usage, and significantly lower tokens per request.

    In conclusion, researchers introduced LightPROF, a novel framework that enhances LLM reasoning through accurate retrieval and efficient encoding of KGs. It narrows the retrieval scope by sampling KGs using stable relationships as units. Researchers developed a complex Knowledge Adapter that effectively parses graph structures and integrates information to enable efficient reasoning with smaller LLMs. It condenses reasoning graphs into fewer tokens while achieving comprehensive alignment with LLM input space through the Projector component. Future research directions include developing KG encoders with strong generalization capabilities that can be applied to unseen KG data without retraining and designing unified cross-modal encoders capable of handling multimodal KGs.


    Check out Paper. All credit for this research goes to the researchers of this project. Also, feel free to follow us on Twitter and don’t forget to join our 85k+ ML SubReddit.

    The post LightPROF: A Lightweight AI Framework that Enables Small-Scale Language Models to Perform Complex Reasoning Over Knowledge Graphs (KGs) Using Structured Prompts appeared first on MarkTechPost.

    Source: Read More 

    Facebook Twitter Reddit Email Copy Link
    Previous ArticleStep by Step Guide on Converting Text to High-Quality Audio Using an Open Source TTS Model on Hugging Face: Including Detailed Audio File Analysis and Diagnostic Tools in Python
    Next Article New White House tariff exemptions for electronics could offer temporary break for tech

    Related Posts

    Machine Learning

    How to Evaluate Jailbreak Methods: A Case Study with the StrongREJECT Benchmark

    July 22, 2025
    Machine Learning

    Boolformer: Symbolic Regression of Logic Functions with Transformers

    July 22, 2025
    Leave A Reply Cancel Reply

    For security, use of Google's reCAPTCHA service is required which is subject to the Google Privacy Policy and Terms of Use.

    Continue Reading

    OpenAI Open Sources BrowseComp: A New Benchmark for Measuring the Ability for AI Agents to Browse the Web

    OpenAI Open Sources BrowseComp: A New Benchmark for Measuring the Ability for AI Agents to Browse the Web

    Machine Learning

    Sam Altman wants OpenAI to be the Microsoft of AI, with a subscription-based operating system built on ChatGPT

    News & Updates

    CVE-2025-4060 – PHPGurukul Notice Board System SQL Injection Vulnerability

    Common Vulnerabilities and Exposures (CVEs)

    zing/laravel-scout-opensearch

    Development

    Highlights

    CVE-2025-6159 – Code-Projects Hostel Management System SQL Injection Vulnerability

    June 17, 2025

    CVE ID : CVE-2025-6159

    Published : June 17, 2025, 4:15 a.m. | 2 hours, 9 minutes ago

    Description : A vulnerability classified as critical was found in code-projects Hostel Management System 1.0. This vulnerability affects unknown code of the file /allocate_room.php. The manipulation of the argument search_box leads to sql injection. The attack can be initiated remotely. The exploit has been disclosed to the public and may be used.

    Severity: 7.3 | HIGH

    Visit the link for more details, such as CVSS details, affected products, timeline, and more…

    AIaaS for Enterprises: Rapid Deployment and Real Results🚀

    June 11, 2025

    How One Path Traversal in Grafana Unleashed XSS, Open Redirect and SSRF (CVE-2025–4123)

    June 3, 2025

    Netgear EX6200 Vulnerabilities Expose Routers to Remote Attacks & Data Theft

    May 1, 2025
    © DevStackTips 2025. All rights reserved.
    • Contact
    • Privacy Policy

    Type above and press Enter to search. Press Esc to cancel.