Close Menu
    DevStackTipsDevStackTips
    • Home
    • News & Updates
      1. Tech & Work
      2. View All

      CodeSOD: A Unique Way to Primary Key

      July 22, 2025

      BrowserStack launches Figma plugin for detecting accessibility issues in design phase

      July 22, 2025

      Parasoft brings agentic AI to service virtualization in latest release

      July 22, 2025

      Node.js vs. Python for Backend: 7 Reasons C-Level Leaders Choose Node.js Talent

      July 21, 2025

      The best CRM software with email marketing in 2025: Expert tested and reviewed

      July 22, 2025

      This multi-port car charger can power 4 gadgets at once – and it’s surprisingly cheap

      July 22, 2025

      I’m a wearables editor and here are the 7 Pixel Watch 4 rumors I’m most curious about

      July 22, 2025

      8 ways I quickly leveled up my Linux skills – and you can too

      July 22, 2025
    • Development
      1. Algorithms & Data Structures
      2. Artificial Intelligence
      3. Back-End Development
      4. Databases
      5. Front-End Development
      6. Libraries & Frameworks
      7. Machine Learning
      8. Security
      9. Software Engineering
      10. Tools & IDEs
      11. Web Design
      12. Web Development
      13. Web Security
      14. Programming Languages
        • PHP
        • JavaScript
      Featured

      The Intersection of Agile and Accessibility – A Series on Designing for Everyone

      July 22, 2025
      Recent

      The Intersection of Agile and Accessibility – A Series on Designing for Everyone

      July 22, 2025

      Zero Trust & Cybersecurity Mesh: Your Org’s Survival Guide

      July 22, 2025

      Execute Ping Commands and Get Back Structured Data in PHP

      July 22, 2025
    • Operating Systems
      1. Windows
      2. Linux
      3. macOS
      Featured

      A Tomb Raider composer has been jailed — His legacy overshadowed by $75k+ in loan fraud

      July 22, 2025
      Recent

      A Tomb Raider composer has been jailed — His legacy overshadowed by $75k+ in loan fraud

      July 22, 2025

      “I don’t think I changed his mind” — NVIDIA CEO comments on H20 AI GPU sales resuming in China following a meeting with President Trump

      July 22, 2025

      Galaxy Z Fold 7 review: Six years later — Samsung finally cracks the foldable code

      July 22, 2025
    • Learning Resources
      • Books
      • Cheatsheets
      • Tutorials & Guides
    Home»Development»Machine Learning»Can Coding Agents Improve Themselves? Researchers from University of Bristol and iGent AI Propose SICA (Self-Improving Coding Agent) that Iteratively Enhances Its Own Code and Performance

    Can Coding Agents Improve Themselves? Researchers from University of Bristol and iGent AI Propose SICA (Self-Improving Coding Agent) that Iteratively Enhances Its Own Code and Performance

    April 30, 2025

    The development of agentic systems—LLMs embedded within scaffolds capable of tool use and autonomous decision-making—has made significant progress. Yet, most implementations today rely on fixed, hand-crafted orchestration strategies. These designs are inherently constrained, limiting the agent’s adaptability to new tasks and environments. As models grow in capability, the rigidity of their execution frameworks becomes a bottleneck, especially in domains such as software engineering where the task complexity and variability demand a more flexible system.

    In response, researchers from the University of Bristol and iGent AI have introduced SICA (Self-Improving Coding Agent)—a novel agent architecture designed to iteratively enhance its own performance by modifying its underlying code. Unlike prior methods, such as ADAS, which split responsibilities between a meta-agent and a target-agent, SICA unifies these roles. The same agent that performs the task is also responsible for evaluating past performance, identifying shortcomings, and updating its own implementation. This integration allows for a continuous loop of self-directed improvement without external intervention.

    Architecture and Mechanism of Self-Improvement

    SICA is built upon a minimal, extensible base agent equipped with tools to manipulate its codebase, navigate directories, execute shell commands, and invoke sub-agents. Its architecture follows a loop: evaluate, select, revise. At each iteration, the agent benchmarks its own performance on predefined tasks, stores results, and selects the most effective prior version to serve as the basis for further improvement.

    The agent evaluates performance using a utility function that combines accuracy, time, and cost metrics. Key components include:

    • Sub-agent structure for decomposing problems and managing context within LLM constraints.
    • Asynchronous oversight, a monitoring LLM thread that ensures the agent remains on-task and halts execution in cases of non-progress or divergence.
    • Self-editing capabilities, with tools such as SmartEditor, AST-based symbol locators, and diff summarizers that enable precise modifications to the agent’s behavior.

    This structure allows the agent to conduct controlled experiments on its own design and deploy updates that demonstrably improve outcomes.

    Empirical Evaluation

    The researchers evaluated SICA on several code-related benchmarks, including a subset of SWE Bench Verified, LiveCodeBench, and synthetic tasks focused on file editing and symbol location. Results indicate measurable gains across iterations. For instance, accuracy on SWE Bench Verified increased from 17% to 53%, and file editing performance improved from 82% to 94%.

    These improvements were not limited to benchmark scores. The agent also optimized execution latency and resource efficiency, reducing average cost and time per task. Notably, improvements were not the result of weight updates to the underlying LLM but were achieved through changes in tool orchestration, file management strategies, and problem decomposition heuristics.

    However, gains were less pronounced on reasoning-dominant tasks such as AIME and GPQA. In these cases, the performance of the base LLM (e.g., o3-mini) already approached the task ceiling, limiting the marginal benefit of additional scaffolding. Moreover, introducing certain tool-based reasoning steps appeared to disrupt rather than enhance the performance of pretrained reasoning models, suggesting a need for more integrated co-training between agent logic and model behavior.

    Conclusion

    The SICA framework illustrates a concrete path toward autonomous improvement in agent systems. By consolidating execution and self-editing within a single agent, the system avoids many pitfalls of manual design and enables iterative refinement driven by empirical feedback. The results show that this approach is viable, particularly in domains with long-horizon, tool-mediated tasks such as software engineering.

    While there are clear boundaries to the effectiveness of scaffold-only improvements—especially for tasks dominated by pure reasoning—the research establishes a foundation for future work in hybrid optimization, where both the model and the agent design evolve jointly. SICA also introduces practical considerations for safety and observability in self-improving systems, using LLM-based overseers and structured execution traces to ensure transparency and control.


    Check out the Paper and GitHub Page. Also, don’t forget to follow us on Twitter and join our Telegram Channel and LinkedIn Group. Don’t Forget to join our 90k+ ML SubReddit.

    🔥 [Register Now] miniCON Virtual Conference on AGENTIC AI: FREE REGISTRATION + Certificate of Attendance + 4 Hour Short Event (May 21, 9 am- 1 pm PST) + Hands on Workshop

    The post Can Coding Agents Improve Themselves? Researchers from University of Bristol and iGent AI Propose SICA (Self-Improving Coding Agent) that Iteratively Enhances Its Own Code and Performance appeared first on MarkTechPost.

    Source: Read More 

    Facebook Twitter Reddit Email Copy Link
    Previous ArticleTutorial on Seamlessly Accessing Any LinkedIn Profile with exa-mcp-server and Claude Desktop Using the Model Context Protocol MCP
    Next Article This AI Tool Is Giving Away $16,000 to Non-Coders (Last Chance to Enter)

    Related Posts

    Machine Learning

    How to Evaluate Jailbreak Methods: A Case Study with the StrongREJECT Benchmark

    July 22, 2025
    Machine Learning

    Boolformer: Symbolic Regression of Logic Functions with Transformers

    July 22, 2025
    Leave A Reply Cancel Reply

    For security, use of Google's reCAPTCHA service is required which is subject to the Google Privacy Policy and Terms of Use.

    Continue Reading

    CVE-2025-27151 – Redis Stack-Based Buffer Overflow Vulnerability

    Common Vulnerabilities and Exposures (CVEs)

    Building Trust and Shaping the Future: Implementing Responsible AI – Part 2

    Development

    CVE-2025-53848 – Apache HTTP Server Cross-Site Request Forgery

    Common Vulnerabilities and Exposures (CVEs)

    Photonic processor could streamline 6G wireless signal processing

    Artificial Intelligence

    Highlights

    CVE-2025-5590 – WordPress Owl Carousel SQL Injection Vulnerability

    June 26, 2025

    CVE ID : CVE-2025-5590

    Published : June 26, 2025, 2:15 a.m. | 3 hours, 44 minutes ago

    Description : The Owl carousel responsive plugin for WordPress is vulnerable to time-based SQL Injection via the ‘id’ parameter in all versions up to, and including, 1.9 due to insufficient escaping on the user supplied parameter and lack of sufficient preparation on the existing SQL query. This makes it possible for authenticated attackers, with Contributor-level access and above, to append additional SQL queries into already existing queries that can be used to extract sensitive information from the database.

    Severity: 8.8 | HIGH

    Visit the link for more details, such as CVSS details, affected products, timeline, and more…

    Plotly brings vibe coding to visual data app development

    June 2, 2025

    Our vision for building a universal AI assistant

    May 20, 2025

    CVE-2025-32967 – OpenEMR Password Change Event Logging Bypass Vulnerability

    May 23, 2025
    © DevStackTips 2025. All rights reserved.
    • Contact
    • Privacy Policy

    Type above and press Enter to search. Press Esc to cancel.