Close Menu
    DevStackTipsDevStackTips
    • Home
    • News & Updates
      1. Tech & Work
      2. View All

      CodeSOD: A Unique Way to Primary Key

      July 22, 2025

      BrowserStack launches Figma plugin for detecting accessibility issues in design phase

      July 22, 2025

      Parasoft brings agentic AI to service virtualization in latest release

      July 22, 2025

      Node.js vs. Python for Backend: 7 Reasons C-Level Leaders Choose Node.js Talent

      July 21, 2025

      The best CRM software with email marketing in 2025: Expert tested and reviewed

      July 22, 2025

      This multi-port car charger can power 4 gadgets at once – and it’s surprisingly cheap

      July 22, 2025

      I’m a wearables editor and here are the 7 Pixel Watch 4 rumors I’m most curious about

      July 22, 2025

      8 ways I quickly leveled up my Linux skills – and you can too

      July 22, 2025
    • Development
      1. Algorithms & Data Structures
      2. Artificial Intelligence
      3. Back-End Development
      4. Databases
      5. Front-End Development
      6. Libraries & Frameworks
      7. Machine Learning
      8. Security
      9. Software Engineering
      10. Tools & IDEs
      11. Web Design
      12. Web Development
      13. Web Security
      14. Programming Languages
        • PHP
        • JavaScript
      Featured

      The Intersection of Agile and Accessibility – A Series on Designing for Everyone

      July 22, 2025
      Recent

      The Intersection of Agile and Accessibility – A Series on Designing for Everyone

      July 22, 2025

      Zero Trust & Cybersecurity Mesh: Your Org’s Survival Guide

      July 22, 2025

      Execute Ping Commands and Get Back Structured Data in PHP

      July 22, 2025
    • Operating Systems
      1. Windows
      2. Linux
      3. macOS
      Featured

      A Tomb Raider composer has been jailed — His legacy overshadowed by $75k+ in loan fraud

      July 22, 2025
      Recent

      A Tomb Raider composer has been jailed — His legacy overshadowed by $75k+ in loan fraud

      July 22, 2025

      “I don’t think I changed his mind” — NVIDIA CEO comments on H20 AI GPU sales resuming in China following a meeting with President Trump

      July 22, 2025

      Galaxy Z Fold 7 review: Six years later — Samsung finally cracks the foldable code

      July 22, 2025
    • Learning Resources
      • Books
      • Cheatsheets
      • Tutorials & Guides
    Home»Development»Machine Learning»Exploring the Sparse Frontier: How Researchers from Edinburgh, Cohere, and Meta Are Rethinking Attention Mechanisms for Long-Context LLMs

    Exploring the Sparse Frontier: How Researchers from Edinburgh, Cohere, and Meta Are Rethinking Attention Mechanisms for Long-Context LLMs

    April 30, 2025

    Sparse attention is emerging as a compelling approach to improve the ability of Transformer-based LLMs to handle long sequences. This is particularly important because the standard self-attention mechanism, central to LLMs, scales poorly with sequence length—its computational cost grows quadratically during the prefilling phase, increasing time-to-first-token and making deployment expensive. During the decoding phase, dense attention leads to a cache that expands linearly with the sequence length, resulting in significant memory bandwidth usage for accessing key-value pairs. These inefficiencies pose substantial challenges for both long-context modeling and scaling at inference time.

    Sparse attention attempts to reduce this computational burden by approximating dense attention using only a subset of key-query pairs. This has the potential to significantly accelerate long-sequence processing and reduce memory requirements, while still preserving model accuracy. However, despite its promise, sparse attention has yet to be thoroughly evaluated at scale. Existing studies have only scratched the surface, often focusing on limited model sizes, restricted sequence lengths, and specific applications such as multi-turn dialogue. Furthermore, the datasets used in these studies usually vary in length, making it difficult to analyze how performance scales with longer sequences. As a result, the practical viability and robustness of sparse attention strategies remain underexplored.

    Researchers from the University of Edinburgh, Cohere, and Meta conducted an extensive evaluation of training-free sparse attention methods across various model sizes, sequence lengths, and sparsity levels. Their study involved nine long-context tasks, including new natural language-based benchmarks designed for controlled and realistic testing. Key findings reveal that for long sequences, large, sparse models outperform smaller, dense ones under fixed computational budgets. While higher sparsity is more tolerable during decoding, no single sparse strategy works universally across tasks. They also introduce scaling laws for sparse attention and release standardized implementations to support reproducible research and guide informed deployment decisions.

    Sparse attention aims to reduce computational and memory costs in Transformers by selectively computing only important query–key interactions. This helps speed up full-sequence “prefilling” and reduce memory load during “decoding.” Key techniques include selecting which parts of the attention matrix to retain (e.g., blocks, windows), estimating importance using fixed or dynamic patterns, and allocating computational budgets either uniformly or adaptively across layers and heads. For decoding, methods either evict less useful key–value pairs to conserve memory or maintain the full cache and load only the necessary parts, balancing speed, memory efficiency, and information retention during generation.

    The study investigates sparse attention methods in long-context models, analyzing performance under fixed computational budgets. At shorter sequence lengths (32k tokens), smaller dense models perform more efficiently, while at longer lengths (128k), larger sparse models are preferable. Compression tolerance varies by model size and task, with larger models maintaining performance even at 20× sparsity. However, some tasks remain sensitive to high compression. No single method consistently excels; chunk-based methods, such as Quest, perform best in decoding, while Vertical-Slash works well in prefilling for simple tasks. A log-linear scaling law effectively predicts accuracy trends across model size, sequence length, and compression ratio.

    In conclusion, the study presents a comprehensive evaluation of sparse attention methods across various model sizes (up to 72 billion parameters), sequence lengths (up to 128 kilobytes), and sparsity levels (up to 95%) on diverse long-sequence tasks. It finds that, under fixed compute (isoFLOPS), large sparse models outperform smaller dense ones for long contexts. While high sparsity (10–15×) can retain accuracy, performance drops significantly on some tasks even at moderate compression. The best sparsity strategy varies by task and phase (prefilling versus decoding), highlighting the absence of a universal solution. The authors also propose reliable scaling laws, suggesting sparse attention is promising but requires careful, task-specific application.


    Check out the Paper. Also, don’t forget to follow us on Twitter and join our Telegram Channel and LinkedIn Group. Don’t Forget to join our 90k+ ML SubReddit.

    🔥 [Register Now] miniCON Virtual Conference on AGENTIC AI: FREE REGISTRATION + Certificate of Attendance + 4 Hour Short Event (May 21, 9 am- 1 pm PST) + Hands on Workshop

    The post Exploring the Sparse Frontier: How Researchers from Edinburgh, Cohere, and Meta Are Rethinking Attention Mechanisms for Long-Context LLMs appeared first on MarkTechPost.

    Source: Read More 

    Facebook Twitter Reddit Email Copy Link
    Previous ArticleMem0: A Scalable Memory Architecture Enabling Persistent, Structured Recall for Long-Term AI Conversations Across Sessions
    Next Article Build public-facing generative AI applications using Amazon Q Business for anonymous users

    Related Posts

    Machine Learning

    How to Evaluate Jailbreak Methods: A Case Study with the StrongREJECT Benchmark

    July 22, 2025
    Machine Learning

    Boolformer: Symbolic Regression of Logic Functions with Transformers

    July 22, 2025
    Leave A Reply Cancel Reply

    For security, use of Google's reCAPTCHA service is required which is subject to the Google Privacy Policy and Terms of Use.

    Continue Reading

    Blurble is a word guessing game

    Linux

    Bitrix24 Review: How Good is the All-in-One CRM?

    Operating Systems

    Grab a pair of Beats Studio Pro headphones for 50% off on Amazon right now

    News & Updates

    CVE-2025-45862 – TOTOLINK A3002R Buffer Overflow Vulnerability

    Common Vulnerabilities and Exposures (CVEs)

    Highlights

    CVE-2025-46778 – Apache HTTP Server Denial of Service

    April 30, 2025

    CVE ID : CVE-2025-46778

    Published : April 30, 2025, 3:15 a.m. | 3 hours, 58 minutes ago

    Description : Rejected reason: Not used

    Severity: 0.0 | NA

    Visit the link for more details, such as CVSS details, affected products, timeline, and more…

    CVE-2025-45468 – FC Stable Diffusion Plus Privilege Escalation Vulnerability

    May 22, 2025

    CVE-2024-51475 – IBM Content Navigator HTML Injection Vulnerability

    May 16, 2025

    CVE-2025-49763: Apache Traffic Server Vulnerability Enables Memory Exhaustion Attacks

    June 21, 2025
    © DevStackTips 2025. All rights reserved.
    • Contact
    • Privacy Policy

    Type above and press Enter to search. Press Esc to cancel.