Close Menu
    DevStackTipsDevStackTips
    • Home
    • News & Updates
      1. Tech & Work
      2. View All

      CodeSOD: A Unique Way to Primary Key

      July 22, 2025

      BrowserStack launches Figma plugin for detecting accessibility issues in design phase

      July 22, 2025

      Parasoft brings agentic AI to service virtualization in latest release

      July 22, 2025

      Node.js vs. Python for Backend: 7 Reasons C-Level Leaders Choose Node.js Talent

      July 21, 2025

      The best CRM software with email marketing in 2025: Expert tested and reviewed

      July 22, 2025

      This multi-port car charger can power 4 gadgets at once – and it’s surprisingly cheap

      July 22, 2025

      I’m a wearables editor and here are the 7 Pixel Watch 4 rumors I’m most curious about

      July 22, 2025

      8 ways I quickly leveled up my Linux skills – and you can too

      July 22, 2025
    • Development
      1. Algorithms & Data Structures
      2. Artificial Intelligence
      3. Back-End Development
      4. Databases
      5. Front-End Development
      6. Libraries & Frameworks
      7. Machine Learning
      8. Security
      9. Software Engineering
      10. Tools & IDEs
      11. Web Design
      12. Web Development
      13. Web Security
      14. Programming Languages
        • PHP
        • JavaScript
      Featured

      The Intersection of Agile and Accessibility – A Series on Designing for Everyone

      July 22, 2025
      Recent

      The Intersection of Agile and Accessibility – A Series on Designing for Everyone

      July 22, 2025

      Zero Trust & Cybersecurity Mesh: Your Org’s Survival Guide

      July 22, 2025

      Execute Ping Commands and Get Back Structured Data in PHP

      July 22, 2025
    • Operating Systems
      1. Windows
      2. Linux
      3. macOS
      Featured

      A Tomb Raider composer has been jailed — His legacy overshadowed by $75k+ in loan fraud

      July 22, 2025
      Recent

      A Tomb Raider composer has been jailed — His legacy overshadowed by $75k+ in loan fraud

      July 22, 2025

      “I don’t think I changed his mind” — NVIDIA CEO comments on H20 AI GPU sales resuming in China following a meeting with President Trump

      July 22, 2025

      Galaxy Z Fold 7 review: Six years later — Samsung finally cracks the foldable code

      July 22, 2025
    • Learning Resources
      • Books
      • Cheatsheets
      • Tutorials & Guides
    Home»Development»Machine Learning»How AI Agents Store, Forget, and Retrieve? A Fresh Look at Memory Operations for the Next-Gen LLMs

    How AI Agents Store, Forget, and Retrieve? A Fresh Look at Memory Operations for the Next-Gen LLMs

    May 5, 2025

    Memory plays a crucial role in LLM-based AI systems, supporting sustained, coherent interactions over time. While earlier surveys have explored memory about LLMs, they often lack attention to the fundamental operations governing memory functions. Key components like memory storage, retrieval, and memory-grounded generation have been studied in isolation, but a unified framework that systematically integrates these processes remains underdeveloped. Although a few recent efforts have proposed operational views of memory to categorize existing work, the field still lacks cohesive memory architectures that clearly define how these atomic operations interact.

    Furthermore, existing surveys tend to address only specific subtopics within the broader memory landscape, such as long-context handling, long-term memory, personalization, or knowledge editing. These fragmented approaches often miss essential operations like indexing and fail to offer comprehensive overviews of memory dynamics. Additionally, most prior work does not establish a clear research scope or provide structured benchmarks and tool coverage, limiting their practical value for guiding future advancements in memory for AI systems. 

    Researchers from the Chinese University, the University of Edinburgh, HKUST, and the Poisson Lab at Huawei UK R&D Ltd. present a detailed survey on memory in AI systems. They classify memory into parametric, contextual-structured, and contextual-unstructured types, distinguishing between short-term and long-term memory inspired by cognitive psychology. Six fundamental operations—consolidation, updating, indexing, forgetting, retrieval, and compression—are defined and mapped to key research areas, including long-term memory, long-context modeling, parametric modification, and multi-source integration. Based on an analysis of over 30,000 papers using the Relative Citation Index, the survey also outlines tools, benchmarks, and future directions. 

    The researchers first develop a three‐part taxonomy of AI memory—parametric (model weights), contextual‐structured (e.g., indexed dialogue histories), and contextual‐unstructured (raw text or embeddings)—and distinguish short‐ versus long‐term spans. They then define six core memory operations: consolidation (storing new information), updating (modifying existing entries), indexing (organizing for fast access), forgetting (removing stale data), retrieval (fetching relevant content), and compression (distilling memories). To ground this framework, they mined over 30,000 top‐tier AI papers (2022–2025), ranked them by Relative Citation Index, and clustered high‐impact works into four themes—long‐term memory, long‐context modeling, parametric editing, and multi‐source integration—thereby mapping each operation and memory type to active research areas and highlighting key benchmarks and tools. 

    The study describes a layered ecosystem of memory-centric AI systems that support long-term context management, user modeling, knowledge retention, and adaptive behavior. This ecosystem is structured across four tiers: foundational components (such as vector stores, large language models like Llama and GPT-4, and retrieval mechanisms like FAISS and BM25), frameworks for memory operations (e.g., LangChain and LlamaIndex), memory layer systems for orchestration and persistence (such as Memary and Memobase), and end-user-facing products (including Me. bot and ChatGPT). These tools provide infrastructure for memory integration, enabling capabilities like grounding, similarity search, long-context understanding, and personalized AI interactions.

    The survey also discusses open challenges and future research directions in AI memory. It highlights the importance of spatio-temporal memory, which balances historical context with real-time updates for adaptive reasoning. Key challenges include parametric memory retrieval, lifelong learning, and efficient knowledge management across memory types. Additionally, the paper draws inspiration from biological memory models, emphasizing dual-memory architectures and hierarchical memory structures. Future work should focus on unifying memory representations, supporting multi-agent memory systems, and addressing security concerns, particularly memory safety and malicious attacks in machine learning techniques. 


    Check out the Paper. Also, don’t forget to follow us on Twitter and join our Telegram Channel and LinkedIn Group. Don’t Forget to join our 90k+ ML SubReddit. For Promotion and Partnerships, please talk us.

    🔥 [Register Now] miniCON Virtual Conference on AGENTIC AI: FREE REGISTRATION + Certificate of Attendance + 4 Hour Short Event (May 21, 9 am- 1 pm PST) + Hands on Workshop

    The post How AI Agents Store, Forget, and Retrieve? A Fresh Look at Memory Operations for the Next-Gen LLMs appeared first on MarkTechPost.

    Source: Read More 

    Facebook Twitter Reddit Email Copy Link
    Previous ArticleSystem Cleaner BleachBit Sees First ‘Major Update’ Since 2023
    Next Article 8 Comprehensive Open-Source and Hosted Solutions to Seamlessly Convert Any API into AI-Ready MCP Servers

    Related Posts

    Machine Learning

    How to Evaluate Jailbreak Methods: A Case Study with the StrongREJECT Benchmark

    July 22, 2025
    Machine Learning

    Boolformer: Symbolic Regression of Logic Functions with Transformers

    July 22, 2025
    Leave A Reply Cancel Reply

    For security, use of Google's reCAPTCHA service is required which is subject to the Google Privacy Policy and Terms of Use.

    Continue Reading

    Evaluating generative AI models with Amazon Nova LLM-as-a-Judge on Amazon SageMaker AI

    Machine Learning

    Microsoft Copilot’s next big upgrade takes on NotebookLM and could save you hours of research time

    News & Updates

    CVE-2025-4352 – Golden Link Secondary System SQL Injection Vulnerability

    Common Vulnerabilities and Exposures (CVEs)

    CVE-2025-38224 – Kvaser PCIEFD Linux Kernel Slab Out-of-Bounds Write

    Common Vulnerabilities and Exposures (CVEs)

    Highlights

    WinZip MotW Bypass Vulnerability Let Hackers Execute Malicious Code Silently

    April 22, 2025

    WinZip MotW Bypass Vulnerability Let Hackers Execute Malicious Code Silently

    Cybersecurity researchers have discovered a critical vulnerability in WinZip that enables attackers to bypass Windows’ Mark-of-the-Web (MotW) security feature, potentially allowing malicious code to e …
    Read more

    Published Date:
    Apr 22, 2025 (2 hours, 44 minutes ago)

    Vulnerabilities has been mentioned in this article.

    CVE-2025-33028

    CVE-2025-31334

    CVE-2025-0411

    CVE-2024-8811

    Xbox and PC’s best L4D alternative has a new class gameplay video for you

    June 12, 2025

    CVE-2025-20972 – Samsung Flow Intent Verification Vulnerability (Information Exposure)

    May 7, 2025

    Everwild’s cancellation has me worried for one of my favorite dev teams and Xbox itself — It needs creative new games to thrive and refresh its identity

    July 2, 2025
    © DevStackTips 2025. All rights reserved.
    • Contact
    • Privacy Policy

    Type above and press Enter to search. Press Esc to cancel.