Close Menu
    DevStackTipsDevStackTips
    • Home
    • News & Updates
      1. Tech & Work
      2. View All

      CodeSOD: A Unique Way to Primary Key

      July 22, 2025

      BrowserStack launches Figma plugin for detecting accessibility issues in design phase

      July 22, 2025

      Parasoft brings agentic AI to service virtualization in latest release

      July 22, 2025

      Node.js vs. Python for Backend: 7 Reasons C-Level Leaders Choose Node.js Talent

      July 21, 2025

      The best CRM software with email marketing in 2025: Expert tested and reviewed

      July 22, 2025

      This multi-port car charger can power 4 gadgets at once – and it’s surprisingly cheap

      July 22, 2025

      I’m a wearables editor and here are the 7 Pixel Watch 4 rumors I’m most curious about

      July 22, 2025

      8 ways I quickly leveled up my Linux skills – and you can too

      July 22, 2025
    • Development
      1. Algorithms & Data Structures
      2. Artificial Intelligence
      3. Back-End Development
      4. Databases
      5. Front-End Development
      6. Libraries & Frameworks
      7. Machine Learning
      8. Security
      9. Software Engineering
      10. Tools & IDEs
      11. Web Design
      12. Web Development
      13. Web Security
      14. Programming Languages
        • PHP
        • JavaScript
      Featured

      The Intersection of Agile and Accessibility – A Series on Designing for Everyone

      July 22, 2025
      Recent

      The Intersection of Agile and Accessibility – A Series on Designing for Everyone

      July 22, 2025

      Zero Trust & Cybersecurity Mesh: Your Org’s Survival Guide

      July 22, 2025

      Execute Ping Commands and Get Back Structured Data in PHP

      July 22, 2025
    • Operating Systems
      1. Windows
      2. Linux
      3. macOS
      Featured

      A Tomb Raider composer has been jailed — His legacy overshadowed by $75k+ in loan fraud

      July 22, 2025
      Recent

      A Tomb Raider composer has been jailed — His legacy overshadowed by $75k+ in loan fraud

      July 22, 2025

      “I don’t think I changed his mind” — NVIDIA CEO comments on H20 AI GPU sales resuming in China following a meeting with President Trump

      July 22, 2025

      Galaxy Z Fold 7 review: Six years later — Samsung finally cracks the foldable code

      July 22, 2025
    • Learning Resources
      • Books
      • Cheatsheets
      • Tutorials & Guides
    Home»Development»Machine Learning»Georgia Tech and Stanford Researchers Introduce MLE-Dojo: A Gym-Style Framework Designed for Training, Evaluating, and Benchmarking Autonomous Machine Learning Engineering (MLE) Agents

    Georgia Tech and Stanford Researchers Introduce MLE-Dojo: A Gym-Style Framework Designed for Training, Evaluating, and Benchmarking Autonomous Machine Learning Engineering (MLE) Agents

    May 15, 2025

    Machine learning engineering (MLE) involves developing, tuning, and deploying machine learning systems that require iterative experimentation, model optimization, and robust handling of data pipelines. As model complexity increases, so do the challenges associated with orchestrating end-to-end workflows efficiently. Researchers have explored the automation of MLE tasks using AI agents to handle these demands. Large Language Models (LLMs), particularly those with strong coding and problem-solving abilities, have shown potential to enhance this process significantly. Their role in automating structured workflows is now being tested through rigorous benchmarks and environments tailored to emulate real-world MLE scenarios.

    A primary hurdle in automating machine learning engineering lies in the work’s inherently iterative and feedback-driven nature. Tasks such as hyperparameter tuning, model debugging, and data preprocessing cannot be resolved in one step; they require repeated modifications and evaluations. Traditional evaluation tools for AI models often rely on static datasets and do not allow for real-time error feedback or interactive problem-solving. This limitation prevents LLM agents from learning through trial and error, an essential component for mastering engineering tasks that evolve or require multiple attempts for success.

    Earlier tools to evaluate LLMs in engineering or coding tasks have mostly focused on individual subtasks or isolated challenges. These include tools like MLAgentBench and DSBench, which rely on narrow test cases sourced from Kaggle competitions or synthetic datasets. While they cover more than basic tasks, they do not enable agents to perform code execution, debugging, or results interpretation in a live setting. Other environments, like SWE-Gym, focus exclusively on software engineering and lack support for machine learning-specific workflows. These limitations have slowed the creation of versatile, high-performing MLE agents that can handle real-time project complexities.

    Researchers from Georgia Institute of Technology and Stanford University have introduced MLE-Dojo, a framework with an interactive environment that connects LLM agents with real-world machine learning tasks derived from over 200 Kaggle competitions. This framework supports tabular data analysis, computer vision, natural language processing, and time-series forecasting challenges. Research introduced MLE-Dojo to allow agents to write, execute, and revise code in a sandboxed, feedback-rich setting. The goal was to replicate the interactive cycles that human engineers follow, enabling structured learning for agents. The environment includes pre-installed dependencies, evaluation metrics, and supports supervised fine-tuning and reinforcement learning strategies.

    MLE-Dojo’s structure consists of modular components that support a wide range of MLE challenges. Each task runs within its own Docker container, isolating it for safety and reproducibility. Agents interact with the environment through a Partially Observable Markov Decision Process, receiving observations, performing actions, and gaining rewards based on performance. The environment supports five primary action types: requesting task information, validating code, executing code, retrieving interaction history, and resetting the environment. It also provides a detailed observation space that includes datasets, execution results, and error messages. The agent receives structured feedback after every interaction, allowing for step-wise improvement. This modular setup helps maintain interoperability and simplifies adding new tasks to the system.

    The evaluation included eight frontier LLMs—Gemini-2.5-Pro, DeepSeek-r1, o3-mini, GPT-4o, GPT-4o-mini, Gemini-2.0-Pro, Gemini-2.0-Flash, and DeepSeek-v3—across four core machine learning domains. Gemini-2.5-Pro achieved the highest Elo rating of 1257, followed by DeepSeek-r1 at 1137 and o3-mini at 1108. Regarding HumanRank, Gemini-2.5-Pro led with 61.95%, indicating its superior performance over human benchmarks. Models like GPT-4o-mini executed code only 20% of the time, adopting conservative strategies, while o3-mini performed executions in over 90% of the cases. The average failure rate for Gemini-2.5-Pro remained the lowest across validation and execution phases, reinforcing its robustness. Among domains, computer vision posed the greatest challenge, with most models scoring under 60 in HumanRank. Reasoning models generally produced longer outputs and maintained stronger performance consistency across iterations.

    The research highlights the difficulty of applying LLMs to full machine learning workflows. It outlines a comprehensive solution in MLE-Dojo that enables learning through interaction, not just completion. MLE-Dojo sets a new standard for training and evaluating autonomous MLE agents by simulating engineering environments more accurately.


    Check out the Paper, Project Page and GitHub Page. All credit for this research goes to the researchers of this project. Also, feel free to follow us on Twitter and don’t forget to join our 90k+ ML SubReddit.

    The post Georgia Tech and Stanford Researchers Introduce MLE-Dojo: A Gym-Style Framework Designed for Training, Evaluating, and Benchmarking Autonomous Machine Learning Engineering (MLE) Agents appeared first on MarkTechPost.

    Source: Read More 

    Facebook Twitter Reddit Email Copy Link
    Previous ArticleHow End-to-End Testing Supports Grid Reliability for Energy Providers
    Next Article CVE-2025-4699 – PHPGurukul Apartment Visitors Management System SQL Injection Vulnerability

    Related Posts

    Machine Learning

    How to Evaluate Jailbreak Methods: A Case Study with the StrongREJECT Benchmark

    July 22, 2025
    Machine Learning

    Boolformer: Symbolic Regression of Logic Functions with Transformers

    July 22, 2025
    Leave A Reply Cancel Reply

    For security, use of Google's reCAPTCHA service is required which is subject to the Google Privacy Policy and Terms of Use.

    Continue Reading

    Long-running execution flows now supported in Amazon Bedrock Flows in public preview

    Machine Learning

    Microsoft to stop pushing older Windows 11 drivers through Windows Update

    Operating Systems

    CVE-2025-48469 – D-Link Firmware Upload Vulnerability (Remote Code Execution)

    Common Vulnerabilities and Exposures (CVEs)

    Save 20% on this encrypted Kingston portable SSD to lock down your data

    News & Updates

    Highlights

    CVE-2025-4412 – Viscosity macOS Launch Agent Dynamic Library Loading Vulnerability

    May 27, 2025

    CVE ID : CVE-2025-4412

    Published : May 27, 2025, 10:15 a.m. | 3 hours, 5 minutes ago

    Description : On macOS systems, by utilizing a Launch Agent and loading the viscosity_openvpn process from the application bundle, it is possible to load a dynamic library with Viscosity’s TCC (Transparency, Consent, and Control) identity. The acquired resource access is limited without entitlements such as access to the camera or microphone. Only user-granted permissions for file resources apply. Access to other resources beyond granted-permissions requires user interaction with a system prompt asking for permission.

    This issue was fixed in version 1.11.5 of Viscosity.

    Severity: 0.0 | NA

    Visit the link for more details, such as CVSS details, affected products, timeline, and more…

    Collaboration: The Most Underrated UX Skill No One Talks About

    June 5, 2025

    Project Manager for Planner in Teams gets real-time task notifications

    May 8, 2025

    The best ad blockers of 2025: Clean up your browsing experience

    June 16, 2025
    © DevStackTips 2025. All rights reserved.
    • Contact
    • Privacy Policy

    Type above and press Enter to search. Press Esc to cancel.