Close Menu
    DevStackTipsDevStackTips
    • Home
    • News & Updates
      1. Tech & Work
      2. View All

      CodeSOD: A Unique Way to Primary Key

      July 22, 2025

      BrowserStack launches Figma plugin for detecting accessibility issues in design phase

      July 22, 2025

      Parasoft brings agentic AI to service virtualization in latest release

      July 22, 2025

      Node.js vs. Python for Backend: 7 Reasons C-Level Leaders Choose Node.js Talent

      July 21, 2025

      The best CRM software with email marketing in 2025: Expert tested and reviewed

      July 22, 2025

      This multi-port car charger can power 4 gadgets at once – and it’s surprisingly cheap

      July 22, 2025

      I’m a wearables editor and here are the 7 Pixel Watch 4 rumors I’m most curious about

      July 22, 2025

      8 ways I quickly leveled up my Linux skills – and you can too

      July 22, 2025
    • Development
      1. Algorithms & Data Structures
      2. Artificial Intelligence
      3. Back-End Development
      4. Databases
      5. Front-End Development
      6. Libraries & Frameworks
      7. Machine Learning
      8. Security
      9. Software Engineering
      10. Tools & IDEs
      11. Web Design
      12. Web Development
      13. Web Security
      14. Programming Languages
        • PHP
        • JavaScript
      Featured

      The Intersection of Agile and Accessibility – A Series on Designing for Everyone

      July 22, 2025
      Recent

      The Intersection of Agile and Accessibility – A Series on Designing for Everyone

      July 22, 2025

      Zero Trust & Cybersecurity Mesh: Your Org’s Survival Guide

      July 22, 2025

      Execute Ping Commands and Get Back Structured Data in PHP

      July 22, 2025
    • Operating Systems
      1. Windows
      2. Linux
      3. macOS
      Featured

      A Tomb Raider composer has been jailed — His legacy overshadowed by $75k+ in loan fraud

      July 22, 2025
      Recent

      A Tomb Raider composer has been jailed — His legacy overshadowed by $75k+ in loan fraud

      July 22, 2025

      “I don’t think I changed his mind” — NVIDIA CEO comments on H20 AI GPU sales resuming in China following a meeting with President Trump

      July 22, 2025

      Galaxy Z Fold 7 review: Six years later — Samsung finally cracks the foldable code

      July 22, 2025
    • Learning Resources
      • Books
      • Cheatsheets
      • Tutorials & Guides
    Home»Development»Machine Learning»SWE-Bench Performance Reaches 50.8% Without Tool Use: A Case for Monolithic State-in-Context Agents

    SWE-Bench Performance Reaches 50.8% Without Tool Use: A Case for Monolithic State-in-Context Agents

    May 18, 2025

    Recent advancements in LM agents have shown promising potential for automating intricate real-world tasks. These agents typically operate by proposing and executing actions through APIs, supporting applications such as software engineering, robotics, and scientific experimentation. As these tasks become more complex, LM agent frameworks have evolved to include multiple agents, multi-step retrieval, and tailored scaffolding to optimize performance. A central challenge lies in effectively exploring and understanding the environment, which has prompted the development of engineered scaffolds using tools, memory mechanisms, and custom pipelines. However, most existing methods assume partial observability, requiring agents to collect observations incrementally. While this assumption holds in dynamic or unfamiliar environments, it is less applicable in fully observable settings like SWE-bench, where all relevant information is accessible from the start.

    In software engineering, research on LM agents has focused on two main strategies: agent-based frameworks and structured pipelines. Agent-based systems, such as SWE-Agent and OpenHands CodeAct, allow LMs to interact autonomously with codebases, often through custom interfaces and retrieval tools. Other models like Moatless and AutoCodeRover enhance localization through search techniques, while SpecRover refines scaffolding design. Alternatively, structured pipelines—such as Agentless and CodeMonkey—decompose tasks into sequential phases like localization, repair, and validation. While these approaches depend on engineered components for performance, the current study proposes leveraging Long-Context LMs (LCLMs) to directly interpret the entire task environment. Advances in LCLM architecture and infrastructure now allow these models to outperform retrieval-augmented systems in many contexts, reducing reliance on complex external scaffolding. 

    Researchers from Stanford, IBM, and the University of Toronto explored whether complex scaffolding is necessary for LM agents tackling tasks like SWE-bench. They show that simply using LCLMs, such as Gemini-1.5-Pro, with proper prompting and no scaffolding, can achieve competitive performance—reaching 38% on SWE-Bench-Verified. Gemini-2.5-Pro, using the same simple setup, reaches 50.8%. Their work suggests that many complex agentic designs could be replaced with a single powerful LCLM, simplifying architecture and training. Additionally, a hybrid two-stage approach using Gemini-1.5-Pro and Claude-3.7 achieves a 48.6% solve rate, further supporting this simplified direction. 

    Traditional LM agents rely on interactive exploration due to partial observability, but many tasks, like software debugging, allow full observability. The study proposes state-in-context agents that leverage LCLMs to directly process full or compressed environment states, bypassing the need for complex agentic scaffolding. For large codebases, a ranking-based compression selects relevant files to fit within context limits. Two methods are introduced: DIRECTSOLVE, where LCLMs solve tasks using the full context; and SELECTSOLVE, where LCLMs localize relevant files for short-context LMs (SCLMs) to solve. Both use targeted patch formats and validation to ensure accuracy and reduce hallucination. 

    The experiments evaluate a simplified agent framework using LLMs on the SWE-bench Verified benchmark, which includes 500 real-world software engineering tasks. The proposed methods, DIRECTSOLVE and SELECTSOLVE, utilize LCLMs like Gemini-1.5-Pro and Gemini-2.5-Pro, and in SELECTSOLVE, an additional SCLM (Claude-3.7-Sonnet) for patch generation. Results show that DIRECTSOLVE outperforms complex agentic approaches like Agentless and CodeAct with minimal engineering. SELECTSOLVE further improves accuracy by leveraging stronger models for patching. Ablation studies highlight the importance of CoT prompting, code restatement, and token-efficient context design. Additionally, positioning relevant files at the start of the prompt improves performance, underscoring limitations in long-context processing. 

    In conclusion, the cost of using LCLM-based methods is currently higher than existing approaches like Agentless and CodeAct, averaging $2.60 per instance compared to $0.25 and $0.87, respectively. However, rapid drops in inference costs and increasing context lengths make LCLMs more practical. Techniques like KV caching significantly lower costs after initial runs, reducing it to about $0.725. Although slight codebase changes still limit caching benefits, further improvements could help. The study also suggests that LCLMs can handle long interaction histories, reducing the need for complex memory and retrieval mechanisms. Notably, unscaffolded LCLM models can perform competitively on SWE-bench tasks. 


    Check out the Paper. All credit for this research goes to the researchers of this project. Also, feel free to follow us on Twitter and don’t forget to join our 90k+ ML SubReddit.

    The post SWE-Bench Performance Reaches 50.8% Without Tool Use: A Case for Monolithic State-in-Context Agents appeared first on MarkTechPost.

    Source: Read More 

    Facebook Twitter Reddit Email Copy Link
    Previous ArticleHow to Build a Powerful and Intelligent Question-Answering System by Using Tavily Search API, Chroma, Google Gemini LLMs, and the LangChain Framework
    Next Article Free LinkedIn Text Formatter

    Related Posts

    Machine Learning

    How to Evaluate Jailbreak Methods: A Case Study with the StrongREJECT Benchmark

    July 22, 2025
    Machine Learning

    Boolformer: Symbolic Regression of Logic Functions with Transformers

    July 22, 2025
    Leave A Reply Cancel Reply

    For security, use of Google's reCAPTCHA service is required which is subject to the Google Privacy Policy and Terms of Use.

    Continue Reading

    Victoria’s Secret Website Down After Security Incident

    Development

    Update PyTorch ASAP | Kaspersky official blog

    Security

    Critical Flaws in Alcatel-Lucent OmniAccess Stellar WLAN APs Allow Full Remote Takeover, PoC Releases

    Security

    Integrating Figma with Cursor IDE Using an MCP Server to Build a Web Login Page

    Machine Learning

    Highlights

    CVE-2025-6459 – Ads Pro Plugin – WordPress Cross-Site Request Forgery (CSRF) Vulnerability

    July 2, 2025

    CVE ID : CVE-2025-6459

    Published : July 2, 2025, 4:15 a.m. | 5 hours, 26 minutes ago

    Description : The Ads Pro Plugin – Multi-Purpose WordPress Advertising Manager plugin for WordPress is vulnerable to Cross-Site Request Forgery in all versions up to, and including, 4.89. This is due to missing or incorrect nonce validation on the bsaCreateAdTemplate function. This makes it possible for unauthenticated attackers to inject and execute arbitrary PHP code via a forged request granted they can trick a site administrator into performing an action such as clicking on a link.

    Severity: 8.8 | HIGH

    Visit the link for more details, such as CVSS details, affected products, timeline, and more…

    CVE-2025-3923 – WordPress Prevent Direct Access – Sensitive Information Exposure

    April 25, 2025

    CVE-2025-5902 – TOTOLINK T10 Buffer Overflow in POST Request Handler

    June 9, 2025

    OpenAI’s o3 and o4-mini Models Can Now Analyze Images Like a Human

    April 20, 2025
    © DevStackTips 2025. All rights reserved.
    • Contact
    • Privacy Policy

    Type above and press Enter to search. Press Esc to cancel.