Close Menu
    DevStackTipsDevStackTips
    • Home
    • News & Updates
      1. Tech & Work
      2. View All

      CodeSOD: A Unique Way to Primary Key

      July 22, 2025

      BrowserStack launches Figma plugin for detecting accessibility issues in design phase

      July 22, 2025

      Parasoft brings agentic AI to service virtualization in latest release

      July 22, 2025

      Node.js vs. Python for Backend: 7 Reasons C-Level Leaders Choose Node.js Talent

      July 21, 2025

      The best CRM software with email marketing in 2025: Expert tested and reviewed

      July 22, 2025

      This multi-port car charger can power 4 gadgets at once – and it’s surprisingly cheap

      July 22, 2025

      I’m a wearables editor and here are the 7 Pixel Watch 4 rumors I’m most curious about

      July 22, 2025

      8 ways I quickly leveled up my Linux skills – and you can too

      July 22, 2025
    • Development
      1. Algorithms & Data Structures
      2. Artificial Intelligence
      3. Back-End Development
      4. Databases
      5. Front-End Development
      6. Libraries & Frameworks
      7. Machine Learning
      8. Security
      9. Software Engineering
      10. Tools & IDEs
      11. Web Design
      12. Web Development
      13. Web Security
      14. Programming Languages
        • PHP
        • JavaScript
      Featured

      The Intersection of Agile and Accessibility – A Series on Designing for Everyone

      July 22, 2025
      Recent

      The Intersection of Agile and Accessibility – A Series on Designing for Everyone

      July 22, 2025

      Zero Trust & Cybersecurity Mesh: Your Org’s Survival Guide

      July 22, 2025

      Execute Ping Commands and Get Back Structured Data in PHP

      July 22, 2025
    • Operating Systems
      1. Windows
      2. Linux
      3. macOS
      Featured

      A Tomb Raider composer has been jailed — His legacy overshadowed by $75k+ in loan fraud

      July 22, 2025
      Recent

      A Tomb Raider composer has been jailed — His legacy overshadowed by $75k+ in loan fraud

      July 22, 2025

      “I don’t think I changed his mind” — NVIDIA CEO comments on H20 AI GPU sales resuming in China following a meeting with President Trump

      July 22, 2025

      Galaxy Z Fold 7 review: Six years later — Samsung finally cracks the foldable code

      July 22, 2025
    • Learning Resources
      • Books
      • Cheatsheets
      • Tutorials & Guides
    Home»Development»Machine Learning»This AI Paper from Microsoft Introduces a DiskANN-Integrated System: A Cost-Effective and Low-Latency Vector Search Using Azure Cosmos DB

    This AI Paper from Microsoft Introduces a DiskANN-Integrated System: A Cost-Effective and Low-Latency Vector Search Using Azure Cosmos DB

    May 19, 2025

    The ability to search high-dimensional vector representations has become a core requirement for modern data systems. These vector representations, generated by deep learning models, encapsulate data’s semantic and contextual meanings. This enables systems to retrieve results not based on exact matches, but on relevance and similarity. Such semantic capabilities are essential in large-scale applications such as web search, AI-powered assistants, and content recommendations, where users and agents alike need access to information in a meaningful way rather than through structured queries alone.

    One of the main issues faced in vector-based retrieval is the high cost and complexity of operating separate systems for transactional data and vector indexes. Traditionally, vector databases are optimized solely for semantic search performance, but they require users to duplicate data from their primary databases, introducing latency, storage overhead, and risk of inconsistencies. Developers are also burdened with synchronizing two distinct systems, which can limit scalability, flexibility, and data integrity when updates occur rapidly.

    Some popular tools for vector search, like Zilliz and Pinecone, operate as standalone services that offer efficient similarity search. However, these platforms rely on segment-based or fully in-memory architectures. They often require repeated rebuilding of indices and can suffer from latency spikes and significant memory usage. This makes them inefficient in scenarios that involve large-scale or constantly changing data. The issue worsens when dealing with updates, filtering queries, or managing multiple tenants, as these systems lack deep integration with transactional operations and structured indexing.

    Researchers at Microsoft introduced an approach that integrates vector indexing directly into Azure Cosmos DB’s NoSQL engine. They used DiskANN, a graph-based indexing library already known for its performance in large-scale semantic search, and re-engineered it to work within Cosmos DB’s infrastructure. This design eliminates the need for a separate vector database. Cosmos DB’s built-in capabilities—such as high availability, elasticity, multi-tenancy, and automatic partitioning—are fully utilized, making the solution both cost-efficient and scalable. Each collection maintains a single vector index per partition, which is synchronized with the main document data using the existing Bw-Tree index structure.

    The rewritten DiskANN library uses Rust and introduces asynchronous operations to ensure compatibility with database environments. It allows the database to retrieve or update only necessary vector components, such as quantized versions or neighbor lists, reducing memory usage. Vector insertions and queries are managed using a hybrid approach, with most computations occurring in quantized space. This design supports paginated searches and filter-aware traversal, which means queries can efficiently handle complex predicates and scale across billions of vectors. The methodology also includes a sharded indexing mode, allowing separate indices based on defined keys, such as tenant ID or time period.

    In experiments, the system demonstrated strong performance. For a dataset of 10 million 768-dimensional vectors, query latency remained below 20 milliseconds (p50), and the system achieved a recall@10 of 94.64%. Compared to enterprise-tier offerings, Azure Cosmos DB provided query costs that were 15× lower than Zilliz and 41× lower than Pinecone. Cost-efficiency was maintained even as the index increased from 100,000 to 10 million vectors, with less than a 2× rise in latency or Request Units (RUs). On ingestion, Cosmos DB charged about $162.5 for 10 million vector inserts, which was lower than Pinecone and DataStax, though higher than Zilliz. Furthermore, recall remained stable even during heavy update cycles, with in-place deletions significantly improving accuracy in shifting data distributions.

    The study presents a compelling solution to unifying vector search with transactional databases. The research team from Microsoft designed a system that simplifies operations and achieves considerable performance in cost, latency, and scalability. By embedding vector search within Cosmos DB, they offer a practical template for integrating semantic capabilities directly into operational workloads.


    Check out the Paper. All credit for this research goes to the researchers of this project. Also, feel free to follow us on Twitter and don’t forget to join our 90k+ ML SubReddit.

    The post This AI Paper from Microsoft Introduces a DiskANN-Integrated System: A Cost-Effective and Low-Latency Vector Search Using Azure Cosmos DB appeared first on MarkTechPost.

    Source: Read More 

    Facebook Twitter Reddit Email Copy Link
    Previous ArticleOmni-R1: Advancing Audio Question Answering with Text-Driven Reinforcement Learning and Auto-Generated Data
    Next Article HERE Technologies boosts developer productivity with new generative AI-powered coding assistant

    Related Posts

    Machine Learning

    How to Evaluate Jailbreak Methods: A Case Study with the StrongREJECT Benchmark

    July 22, 2025
    Machine Learning

    Boolformer: Symbolic Regression of Logic Functions with Transformers

    July 22, 2025
    Leave A Reply Cancel Reply

    For security, use of Google's reCAPTCHA service is required which is subject to the Google Privacy Policy and Terms of Use.

    Continue Reading

    CVE-2025-5854 – “Tenda AC6 Buffer Overflow Vulnerability”

    Common Vulnerabilities and Exposures (CVEs)

    I tested JBL’s newest premium headphones – Bose and Sony should watch out

    News & Updates

    12 UX design examples that show how to stop user errors before they happen

    Web Development

    CVE-2025-3283 – “Apache Struts Deserialization Remote Code Execution Vulnerability”

    Common Vulnerabilities and Exposures (CVEs)

    Highlights

    New Apache InLong Vulnerability (CVE-2025-27522) Exposes Systems to Remote Code Execution Risks

    May 31, 2025

    New Apache InLong Vulnerability (CVE-2025-27522) Exposes Systems to Remote Code Execution Risks

    A newly disclosed vulnerability, tracked as CVE-2025-27522, has been discovered in Apache InLong, a widely used real-time data streaming platform. The Apache InLong vulnerability introduces the potent …
    Read more

    Published Date:
    May 30, 2025 (1 day, 10 hours ago)

    Vulnerabilities has been mentioned in this article.

    CVE-2025-27522

    CVE-2025-46762

    CVE-2024-26579

    Laravel in the First Half of 2025

    July 4, 2025

    CVE-2025-5521 – WuKongOpenSource WukongCRM Cross-Site Request Forgery Vulnerability

    June 3, 2025

    CVE-2025-45010 – PHPGurukul Park Ticketing Management System HTML Injection

    April 30, 2025
    © DevStackTips 2025. All rights reserved.
    • Contact
    • Privacy Policy

    Type above and press Enter to search. Press Esc to cancel.