Close Menu
    DevStackTipsDevStackTips
    • Home
    • News & Updates
      1. Tech & Work
      2. View All

      CodeSOD: A Unique Way to Primary Key

      July 22, 2025

      BrowserStack launches Figma plugin for detecting accessibility issues in design phase

      July 22, 2025

      Parasoft brings agentic AI to service virtualization in latest release

      July 22, 2025

      Node.js vs. Python for Backend: 7 Reasons C-Level Leaders Choose Node.js Talent

      July 21, 2025

      The best CRM software with email marketing in 2025: Expert tested and reviewed

      July 22, 2025

      This multi-port car charger can power 4 gadgets at once – and it’s surprisingly cheap

      July 22, 2025

      I’m a wearables editor and here are the 7 Pixel Watch 4 rumors I’m most curious about

      July 22, 2025

      8 ways I quickly leveled up my Linux skills – and you can too

      July 22, 2025
    • Development
      1. Algorithms & Data Structures
      2. Artificial Intelligence
      3. Back-End Development
      4. Databases
      5. Front-End Development
      6. Libraries & Frameworks
      7. Machine Learning
      8. Security
      9. Software Engineering
      10. Tools & IDEs
      11. Web Design
      12. Web Development
      13. Web Security
      14. Programming Languages
        • PHP
        • JavaScript
      Featured

      The Intersection of Agile and Accessibility – A Series on Designing for Everyone

      July 22, 2025
      Recent

      The Intersection of Agile and Accessibility – A Series on Designing for Everyone

      July 22, 2025

      Zero Trust & Cybersecurity Mesh: Your Org’s Survival Guide

      July 22, 2025

      Execute Ping Commands and Get Back Structured Data in PHP

      July 22, 2025
    • Operating Systems
      1. Windows
      2. Linux
      3. macOS
      Featured

      A Tomb Raider composer has been jailed — His legacy overshadowed by $75k+ in loan fraud

      July 22, 2025
      Recent

      A Tomb Raider composer has been jailed — His legacy overshadowed by $75k+ in loan fraud

      July 22, 2025

      “I don’t think I changed his mind” — NVIDIA CEO comments on H20 AI GPU sales resuming in China following a meeting with President Trump

      July 22, 2025

      Galaxy Z Fold 7 review: Six years later — Samsung finally cracks the foldable code

      July 22, 2025
    • Learning Resources
      • Books
      • Cheatsheets
      • Tutorials & Guides
    Home»Development»Databases»Agentic Workflows in Insurance Claim Processing

    Agentic Workflows in Insurance Claim Processing

    May 21, 2025

    In 2025, agentic AI is transforming the insurance industry, enabling autonomous systems to perceive, reason, and act independently to achieve complex objectives. Insurers are heavily investing in these technologies to overcome legacy system limitations, deliver hyper-personalized customer experiences, and to capitalize on the $79.86 billion AI insurance market projected by 2032.

    Central to this transformation is efficient claim processing. AI tools like natural language processing, image classification, and vector embedding help insurers effectively manage claim-related data. These capabilities generate precise catastrophe impact assessments, expedite claim routing with richer metadata, prevent litigation through better analysis, and minimize financial losses using more accurate risk evaluations.

    Because AI’s promises often sound compelling—but fall short when moving from experimentation to real-world production—this post explores how an AI agent can manage a multi-step claim processing workflow.

    In this workflow, the agent manages accident photos, assesses damage, and verifies insurance coverage to enhance process efficiency and improve customer satisfaction. This system employs large language models (LLMs) to analyze policy information and related documents provided by MongoDB Atlas Vector Search, with the outcomes stored in the Atlas database.

    Creating a work order for claim handlers

    The defining characteristic of AI agents, which is what sets them apart from simply prompting an LLM, is autonomy. The ability to be goal-driven and to operate without precise instructions makes AI agents powerful allies for humans, who can now delegate tedious tasks like never before.

    But each agent has a different degree of autonomy, and building such systems is a tradeoff between reliability and prescriptiveness. Since LLMs—which can be thought of as the agent’s brain—tend to hallucinate and behave nondeterministically, developers need to be very cautious. Too much “freedom” can lead to unexpected outcomes. On the other hand, including too many constraints, instructions, or hardcoded steps defeats the purpose of building agents.

    To help agents understand their context, it is important to craft a prompt that describes their scope and goals. This is part of the prompt we’ve used for this exercise:

    “You are a claims handler assistant for an insurance company. Your goal is to help claim handlers understand the scope of the current claim and provide relevant information to help them make an informed decision. In particular, based on the description of the accident, you need to fetch and summarize relevant insurance guidelines so that the handler can determine the coverage and process the claim accordingly. Present your findings in a clear and extremely concise manner.”

    In addition to the definition of the tasks, it is also important to give instructions on the tools available to the agent and how to use them. Our system is pretty basic, featuring only two tools: Atlas Vector Search and write to the database (see Figure 1).

    Figure 1. Agentic workflow.
    Diagram showing the agentic workflow utilized. On the left, the customer takes and submits a photo of the damages. The AI then ingests the photos, and files them in the claim summary while also finding the related policy. This information is then provided to the claim handler.

    The Vector Search step maps the vectorized image description to the vectorized related policy, which also contains the description of the coverages for that class of accident.

    The policy and the related coverages are used by the agent to figure out the recommended next actions and assign a work order to a claim handler. This information is persisted in the database using the second tool, write to the database.

    Figure 2. Claim handler workflow.
    Gif showing how the application works for the customer during their interactions with the claim handler.

    What does the future hold?

    In our example, the degree of autonomy is quite low, and for the agent, it boils down to deciding when to use which tool. In real-life scenarios, such systems, even if simple, can save a lot of manual work. They eliminate the need for claim handlers to manually locate related policies and coverages, a cumbersome and error-prone process that involves searching multiple systems, reading lengthy PDFs, and summarizing all their findings.

    Agents are still in their infancy and require handholding, but they have the potential to act with a degree of autonomy never before seen in software. AI agents can reason, perceive, and act—and their performance is improving at a breakneck pace.

    The insurance industry (like everybody else!) needs to make sure it’s ready to start experimenting and to embrace change. This can only happen if systems and processes are aligned on one imperative: “make the data easier to work with.”

    To learn more about integrating AI into insurance systems with MongoDB, check out the following resources:

    • The MongoDB Ebook: Innovate With AI: The Future Enterprise

    • The MongoDB Blog: AI-Powered Call Centers: A New Era of Customer Service

    • The MongoDB Youtube Channel: Unlock PDF Search in Insurance with MongoDB & SuperDuperDB

    Source: Read More

    Facebook Twitter Reddit Email Copy Link
    Previous ArticleHow to configure a Linked Server between Amazon RDS for SQL Server and Teradata database
    Next Article Russian Hackers Exploit Email and VPN Vulnerabilities to Spy on Ukraine Aid Logistics

    Related Posts

    Development

    GPT-5 is Coming: Revolutionizing Software Testing

    July 22, 2025
    Development

    Win the Accessibility Game: Combining AI with Human Judgment

    July 22, 2025
    Leave A Reply Cancel Reply

    For security, use of Google's reCAPTCHA service is required which is subject to the Google Privacy Policy and Terms of Use.

    Continue Reading

    DRY – a common source of bad abstractions

    Learning Resources

    100,000+ WordPress Sites Exposed to Privilege Escalation Attacks via MCP AI Engine

    Security

    Chrome’s Tab Search Feature Finds a New Home in the Toolbar

    Operating Systems

    CVE-2025-43011 – SAP Landscape Transformation Authorization Bypass Vulnerability

    Common Vulnerabilities and Exposures (CVEs)

    Highlights

    Machine Learning

    Foundation Models No Longer Need Prompts or Labels: EPFL Researchers Introduce a Joint Inference Framework for Fully Unsupervised Adaptation Using Fine-Tuning and In-Context Learning

    April 14, 2025

    Foundation models, often massive neural networks trained on extensive text and image data, have significantly…

    Microsoft Halts Automatic Windows 11 Upgrades via KB5001716, Shifts to Notifications Only

    July 7, 2025

    Fancy Bear Hackers Attacking Governments, Military Entities With New Sophisticated Tools

    July 18, 2025

    CVE-2025-23107 – Samsung Exynos Out-of-Bounds Write Vulnerability

    June 3, 2025
    © DevStackTips 2025. All rights reserved.
    • Contact
    • Privacy Policy

    Type above and press Enter to search. Press Esc to cancel.