Close Menu
    DevStackTipsDevStackTips
    • Home
    • News & Updates
      1. Tech & Work
      2. View All

      CodeSOD: A Unique Way to Primary Key

      July 22, 2025

      BrowserStack launches Figma plugin for detecting accessibility issues in design phase

      July 22, 2025

      Parasoft brings agentic AI to service virtualization in latest release

      July 22, 2025

      Node.js vs. Python for Backend: 7 Reasons C-Level Leaders Choose Node.js Talent

      July 21, 2025

      The best CRM software with email marketing in 2025: Expert tested and reviewed

      July 22, 2025

      This multi-port car charger can power 4 gadgets at once – and it’s surprisingly cheap

      July 22, 2025

      I’m a wearables editor and here are the 7 Pixel Watch 4 rumors I’m most curious about

      July 22, 2025

      8 ways I quickly leveled up my Linux skills – and you can too

      July 22, 2025
    • Development
      1. Algorithms & Data Structures
      2. Artificial Intelligence
      3. Back-End Development
      4. Databases
      5. Front-End Development
      6. Libraries & Frameworks
      7. Machine Learning
      8. Security
      9. Software Engineering
      10. Tools & IDEs
      11. Web Design
      12. Web Development
      13. Web Security
      14. Programming Languages
        • PHP
        • JavaScript
      Featured

      The Intersection of Agile and Accessibility – A Series on Designing for Everyone

      July 22, 2025
      Recent

      The Intersection of Agile and Accessibility – A Series on Designing for Everyone

      July 22, 2025

      Zero Trust & Cybersecurity Mesh: Your Org’s Survival Guide

      July 22, 2025

      Execute Ping Commands and Get Back Structured Data in PHP

      July 22, 2025
    • Operating Systems
      1. Windows
      2. Linux
      3. macOS
      Featured

      A Tomb Raider composer has been jailed — His legacy overshadowed by $75k+ in loan fraud

      July 22, 2025
      Recent

      A Tomb Raider composer has been jailed — His legacy overshadowed by $75k+ in loan fraud

      July 22, 2025

      “I don’t think I changed his mind” — NVIDIA CEO comments on H20 AI GPU sales resuming in China following a meeting with President Trump

      July 22, 2025

      Galaxy Z Fold 7 review: Six years later — Samsung finally cracks the foldable code

      July 22, 2025
    • Learning Resources
      • Books
      • Cheatsheets
      • Tutorials & Guides
    Home»Development»Machine Learning»Meet NovelSeek: A Unified Multi-Agent Framework for Autonomous Scientific Research from Hypothesis Generation to Experimental Validation

    Meet NovelSeek: A Unified Multi-Agent Framework for Autonomous Scientific Research from Hypothesis Generation to Experimental Validation

    May 31, 2025

    Scientific research across fields like chemistry, biology, and artificial intelligence has long relied on human experts to explore knowledge, generate ideas, design experiments, and refine results. Yet, as problems grow more complex and data-intensive, discovery slows. While AI tools, such as language models and robotics, can handle specific tasks, like literature searches or code analysis, they rarely encompass the entire research cycle. Bridging the gap between idea generation and experimental validation remains a key challenge. For AI to autonomously advance science, it must propose hypotheses, design and execute experiments, analyze outcomes, and refine approaches in an iterative loop. Without this integration, AI risks producing disconnected ideas that depend on human supervision for validation.

    Before the introduction of a unified system, researchers relied on separate tools for each stage of the process. Large language models could help find relevant scientific papers, but they didn’t directly feed into experiment design or result analysis. Robotics can assist in automating physical experiments, and coding libraries like PyTorch can help build models; however, these tools operate independently of each other. There was no single system capable of handling the entire process, from forming ideas to verifying them through experiments. This led to bottlenecks, where researchers had to connect the dots manually, slowing progress and leaving room for errors or missed opportunities. The need for an integrated system that could handle the entire research cycle became clear.

    Researchers from the NovelSeek Team at the Shanghai Artificial Intelligence Laboratory developed NovelSeek, an AI system designed to run the entire scientific discovery process autonomously. NovelSeek comprises four main modules that work in tandem: a system that generates and refines research ideas, a feedback loop where human experts can interact with and refine these ideas, a method for translating ideas into code and experiment plans, and a process for conducting multiple rounds of experiments. What makes NovelSeek stand out is its versatility; it works across 12 scientific research tasks, including predicting chemical reaction yields, understanding molecular dynamics, forecasting time-series data, and handling functions like 2D semantic segmentation and 3D object classification. The team designed NovelSeek to minimize human involvement, expedite discoveries, and deliver consistent, high-quality results.

    The system behind NovelSeek involves multiple specialized agents, each focused on a specific part of the research workflow. The “Survey Agent” helps the system understand the problem by searching scientific papers and identifying relevant information based on keywords and task definitions. It adapts its search strategy by first doing a broad survey of papers, then going deeper by analyzing full-text documents for detailed insights. This ensures that the system captures both general trends and specific technical knowledge. The “Code Review Agent” examines existing codebases, whether user-uploaded or sourced from public repositories like GitHub, to understand how current methods work and identify areas for improvement. It checks how code is structured, looks for errors, and creates summaries that help the system build on past work. The “Idea Innovation Agent” generates creative research ideas, pushing the system to explore different approaches and refine them by comparing them to related studies and previous results. The system even includes a “Planning and Execution Agent” that turns ideas into detailed experiments, handles errors during the testing process, and ensures smooth execution of multi-step research plans.

    NovelSeek delivered impressive results across various tasks. In chemical reaction yield prediction, NovelSeek improved performance from a baseline of 24.2% (with a variation of ±4.2) to 34.8% (with a much smaller variation of ±1.1) in just 12 hours, progress that human researchers typically need months to achieve. In enhancer activity prediction, a key task in biology, NovelSeek raised the Pearson correlation coefficient from 0.65 to 0.79 within 4 hours. For 2D semantic segmentation, a task used in computer vision, precision improved from 78.8% to 81.0% in just 30 hours. These performance boosts, achieved in a fraction of the time typically needed, highlight the system’s efficiency. NovelSeek also successfully managed large, complex codebases with multiple files, demonstrating its ability to handle research tasks at a project level, not just in small, isolated tests. The team has made the code open-source, allowing others to use, test, and contribute to its improvement.

    Several Key Takeaways from the Research on NovelSeek include:

    • NovelSeek supports 12 research tasks, including chemical reaction prediction, molecular dynamics, and 3D object classification.
    • Reaction yield prediction accuracy improved from 24.2% to 34.8% in 12 hours.
    • Enhancer activity prediction performance increased from 0.65 to 0.79 in 4 hours.
    • 2D semantic segmentation precision improved from 78.8% to 81.0% in 30 hours.
    • NovelSeek includes agents for literature search, code analysis, idea generation, and experiment execution.
    • The system is open-source, enabling reproducibility and collaboration across scientific fields.

    In conclusion, NovelSeek demonstrates how combining AI tools into a single system can accelerate scientific discovery and reduce its dependence on human effort. It ties together the key steps, generating ideas, turning them into methods, and testing them through experiments, into one streamlined process. What once took researchers months or years can now be done in days or even hours. By linking every stage of research into a continuous loop, NovelSeek helps teams move from rough ideas to real-world results more quickly. This system highlights the power of AI not just to assist, but to drive scientific research in a way that could reshape how discoveries are made across many fields.


    Check out the Paper and GitHub Page . All credit for this research goes to the researchers of this project. Also, feel free to follow us on Twitter and don’t forget to join our 95k+ ML SubReddit and Subscribe to our Newsletter.

    The post Meet NovelSeek: A Unified Multi-Agent Framework for Autonomous Scientific Research from Hypothesis Generation to Experimental Validation appeared first on MarkTechPost.

    Source: Read More 

    Facebook Twitter Reddit Email Copy Link
    Previous ArticleDistribution Release: PorteuX 2.1
    Next Article This AI Paper from Microsoft Introduces WINA: A Training-Free Sparse Activation Framework for Efficient Large Language Model Inference

    Related Posts

    Machine Learning

    How to Evaluate Jailbreak Methods: A Case Study with the StrongREJECT Benchmark

    July 22, 2025
    Machine Learning

    Boolformer: Symbolic Regression of Logic Functions with Transformers

    July 22, 2025
    Leave A Reply Cancel Reply

    For security, use of Google's reCAPTCHA service is required which is subject to the Google Privacy Policy and Terms of Use.

    Continue Reading

    CVE-2025-6463 – Forminator Forms – WordPress Remote Code Execution via File Deletion

    Common Vulnerabilities and Exposures (CVEs)

    CVE-2025-52922 – Innoshop Directory Traversal Remote File Inclusion

    Common Vulnerabilities and Exposures (CVEs)

    Beyond Provocative: How One AI Company’s Ad Campaign Betrays Humanity

    Web Development

    CVE-2025-34112 – Riverbed SteelCentral NetProfiler/NetExpress Remote Code Execution

    Common Vulnerabilities and Exposures (CVEs)

    Highlights

    CVE-2025-4156 – PHPGurukul Boat Booking System SQL Injection Vulnerability

    May 1, 2025

    CVE ID : CVE-2025-4156

    Published : May 1, 2025, 8:15 a.m. | 3 hours, 38 minutes ago

    Description : A vulnerability has been found in PHPGurukul Boat Booking System 1.0 and classified as critical. This vulnerability affects unknown code of the file /admin/change-image.php. The manipulation of the argument ID leads to sql injection. The attack can be initiated remotely. The exploit has been disclosed to the public and may be used.

    Severity: 6.3 | MEDIUM

    Visit the link for more details, such as CVSS details, affected products, timeline, and more…

    CVE-2025-26481 – Dell PowerScale OneFS Denial of Service Vulnerability

    May 15, 2025

    CVE-2025-6141 – GNU Ncurses Stack-Based Buffer Overflow Vulnerability

    June 16, 2025

    CVE-2025-6071 – ABB RMC-100 ABB RMC-100 LITE Hard-coded Cryptographic Key Information Disclosure

    July 3, 2025
    © DevStackTips 2025. All rights reserved.
    • Contact
    • Privacy Policy

    Type above and press Enter to search. Press Esc to cancel.