Close Menu
    DevStackTipsDevStackTips
    • Home
    • News & Updates
      1. Tech & Work
      2. View All

      CodeSOD: A Unique Way to Primary Key

      July 22, 2025

      BrowserStack launches Figma plugin for detecting accessibility issues in design phase

      July 22, 2025

      Parasoft brings agentic AI to service virtualization in latest release

      July 22, 2025

      Node.js vs. Python for Backend: 7 Reasons C-Level Leaders Choose Node.js Talent

      July 21, 2025

      The best CRM software with email marketing in 2025: Expert tested and reviewed

      July 22, 2025

      This multi-port car charger can power 4 gadgets at once – and it’s surprisingly cheap

      July 22, 2025

      I’m a wearables editor and here are the 7 Pixel Watch 4 rumors I’m most curious about

      July 22, 2025

      8 ways I quickly leveled up my Linux skills – and you can too

      July 22, 2025
    • Development
      1. Algorithms & Data Structures
      2. Artificial Intelligence
      3. Back-End Development
      4. Databases
      5. Front-End Development
      6. Libraries & Frameworks
      7. Machine Learning
      8. Security
      9. Software Engineering
      10. Tools & IDEs
      11. Web Design
      12. Web Development
      13. Web Security
      14. Programming Languages
        • PHP
        • JavaScript
      Featured

      The Intersection of Agile and Accessibility – A Series on Designing for Everyone

      July 22, 2025
      Recent

      The Intersection of Agile and Accessibility – A Series on Designing for Everyone

      July 22, 2025

      Zero Trust & Cybersecurity Mesh: Your Org’s Survival Guide

      July 22, 2025

      Execute Ping Commands and Get Back Structured Data in PHP

      July 22, 2025
    • Operating Systems
      1. Windows
      2. Linux
      3. macOS
      Featured

      A Tomb Raider composer has been jailed — His legacy overshadowed by $75k+ in loan fraud

      July 22, 2025
      Recent

      A Tomb Raider composer has been jailed — His legacy overshadowed by $75k+ in loan fraud

      July 22, 2025

      “I don’t think I changed his mind” — NVIDIA CEO comments on H20 AI GPU sales resuming in China following a meeting with President Trump

      July 22, 2025

      Galaxy Z Fold 7 review: Six years later — Samsung finally cracks the foldable code

      July 22, 2025
    • Learning Resources
      • Books
      • Cheatsheets
      • Tutorials & Guides
    Home»Development»Machine Learning»A Comprehensive Coding Tutorial for Advanced SerpAPI Integration with Google Gemini-1.5-Flash for Advanced Analytics

    A Comprehensive Coding Tutorial for Advanced SerpAPI Integration with Google Gemini-1.5-Flash for Advanced Analytics

    June 6, 2025

    In this tutorial, we demonstrate how to combine the power of SerpAPI’s Google search capabilities with Google’s Gemini-1.5-Flash model to create an advanced, end-to-end research and analysis workflow within a Google Colab notebook. By defining an AdvancedSerpAPI Python class, users gain access to enhanced search methods that cover general web results, news articles, and images, while also leveraging Gemini to perform in-depth analyses of those results. The code provides specialized utilities for targeting Marktechpost tutorials, aggregating content across categories like LangChain, ChatGPT, and MLOps, and then synthesizing actionable insights using a carefully constructed prompt.

    Copy CodeCopiedUse a different Browser
    !pip install google-search-results langchain-community langchain-core google-generativeai -q
    
    
    import os
    import json
    from serpapi import GoogleSearch
    import google.generativeai as genai
    from datetime import datetime

    We install the required Python packages for SerpAPI searches, LangChain utilities, and Google’s Gemini SDK. The subsequent imports bring in standard modules (os, json, datetime) for environment configuration, JSON handling, and timestamps, as well as SerpAPI’s GoogleSearch class for making API calls and genai for interacting with the Gemini model.

    Copy CodeCopiedUse a different Browser
    SERPAPI_API_KEY = "Use Your API Key Here"  
    GEMINI_API_KEY = "Use Your API Key Here"  
    
    
    os.environ["SERPAPI_API_KEY"] = SERPAPI_API_KEY
    genai.configure(api_key=GEMINI_API_KEY)
    

    We assign placeholder strings for your SerpAPI and Gemini API keys, then set the SerpAPI key as an environment variable (so SerpAPI calls authenticate automatically) and configure the Gemini client with its API key so you can invoke the Gemini model.

    Copy CodeCopiedUse a different Browser
    class AdvancedSerpAPI:
        def __init__(self, serpapi_key, gemini_key):
            self.serpapi_key = serpapi_key
            self.gemini_model = genai.GenerativeModel('gemini-1.5-flash')
           
        def search_google(self, query, num_results=5, location="United States"):
            """Enhanced Google search with multiple parameters"""
            params = {
                "engine": "google",
                "q": query,
                "api_key": self.serpapi_key,
                "num": num_results,
                "location": location,
                "hl": "en",
                "gl": "us"
            }
           
            search = GoogleSearch(params)
            results = search.get_dict()
            return self.extract_search_results(results)
       
        def search_news(self, query, days_back=7):
            """Search for recent news articles"""
            params = {
                "engine": "google_news",
                "q": query,
                "api_key": self.serpapi_key,
                "gl": "us",
                "hl": "en"
            }
           
            search = GoogleSearch(params)
            results = search.get_dict()
            return self.extract_news_results(results)
       
        def search_images(self, query, num_images=10):
            """Search for images with metadata"""
            params = {
                "engine": "google_images",
                "q": query,
                "api_key": self.serpapi_key,
                "num": num_images
            }
           
            search = GoogleSearch(params)
            results = search.get_dict()
            return self.extract_image_results(results)
       
        def extract_search_results(self, results):
            """Extract and clean search results"""
            cleaned_results = []
            if 'organic_results' in results:
                for result in results['organic_results']:
                    cleaned_results.append({
                        'title': result.get('title', ''),
                        'link': result.get('link', ''),
                        'snippet': result.get('snippet', ''),
                        'position': result.get('position', 0)
                    })
            return cleaned_results
       
        def extract_news_results(self, results):
            """Extract news articles with timestamps"""
            news_results = []
            if 'news_results' in results:
                for article in results['news_results']:
                    news_results.append({
                        'title': article.get('title', ''),
                        'link': article.get('link', ''),
                        'snippet': article.get('snippet', ''),
                        'date': article.get('date', ''),
                        'source': article.get('source', '')
                    })
            return news_results
       
        def extract_image_results(self, results):
            """Extract image results with metadata"""
            image_results = []
            if 'images_results' in results:
                for img in results['images_results']:
                    image_results.append({
                        'title': img.get('title', ''),
                        'original': img.get('original', ''),
                        'thumbnail': img.get('thumbnail', ''),
                        'source': img.get('source', '')
                    })
            return image_results
       
        def analyze_with_gemini(self, search_results, analysis_prompt):
            """Use Gemini Flash to analyze search results"""
            results_text = json.dumps(search_results, indent=2)
           
            full_prompt = f"""
            {analysis_prompt}
           
            Search Results Data:
            {results_text}
           
            Please provide a comprehensive analysis based on the search results.
            """
           
            try:
                response = self.gemini_model.generate_content(full_prompt)
                return response.text
            except Exception as e:
                return f"Gemini analysis failed: {str(e)}"
       
        def search_marktechpost_tutorials(self, topic="", num_results=10):
            """Search specifically for trending tutorials from Marktechpost"""
            queries = [
                f"site:marktechpost.com {topic} tutorial guide how-to 2024 2025",
                f"site:marktechpost.com trending {topic} tutorial",
                f"site:marktechpost.com top {topic} books frameworks"
            ]
           
            all_results = []
            for query in queries:
                params = {
                    "engine": "google",
                    "q": query,
                    "api_key": self.serpapi_key,
                    "num": num_results // len(queries),
                    "hl": "en",
                    "gl": "us"
                }
               
                search = GoogleSearch(params)
                results = search.get_dict()
                extracted = self.extract_search_results(results)
                all_results.extend(extracted)
           
            unique_results = []
            seen_links = set()
            for result in all_results:
                if result['link'] not in seen_links:
                    unique_results.append(result)
                    seen_links.add(result['link'])
           
            return unique_results[:num_results]
       
        def get_trending_marktechpost_content(self, categories=None):
            """Get trending content from Marktechpost across different categories"""
            if categories is None:
                categories = ["AI", "LLM", "Machine Learning", "Python", "Tutorial", "Framework"]
           
            trending_content = {}
           
            for category in categories:
                print(f"🔍 Searching for trending {category} content...")
                results = self.search_marktechpost_tutorials(category, num_results=5)
                trending_content[category] = results
                print(f"✅ Found {len(results)} {category} tutorials")
           
            return trending_content
    
    
        def smart_research(self, topic, research_depth="medium", focus_marktechpost=True):
            """Intelligent research combining multiple search types with Marktechpost focus"""
            print(f"🔍 Starting smart research on: {topic}")
           
            if focus_marktechpost:
                marktechpost_results = self.search_marktechpost_tutorials(topic, num_results=8)
                print(f"✅ Found {len(marktechpost_results)} Marktechpost tutorials")
               
                web_results = self.search_google(f"{topic} tutorial guide", num_results=3)
                print(f"✅ Found {len(web_results)} additional web results")
               
                all_web_results = marktechpost_results + web_results
            else:
                all_web_results = self.search_google(f"{topic} overview facts", num_results=5)
                print(f"✅ Found {len(all_web_results)} web results")
           
            news_results = self.search_news(topic)
            print(f"✅ Found {len(news_results)} news articles")
           
            analysis_prompt = f"""
            Analyze the search results about '{topic}' with focus on Marktechpost content and provide:
            1. Key tutorials and guides available
            2. Trending topics and frameworks
            3. Learning resources and books mentioned
            4. Recent developments and updates
            5. Practical implementation guides
            6. Recommended learning path
           
            Focus on actionable insights and learning resources.
            """
           
            all_results = {
                "marktechpost_results": marktechpost_results if focus_marktechpost else [],
                "web_results": all_web_results,
                "news_results": news_results,
                "search_topic": topic,
                "timestamp": datetime.now().isoformat()
            }
           
            gemini_analysis = self.analyze_with_gemini(all_results, analysis_prompt)
           
            return {
                "topic": topic,
                "marktechpost_tutorials": marktechpost_results if focus_marktechpost else [],
                "web_results": all_web_results,
                "news_results": news_results,
                "ai_analysis": gemini_analysis,
                "total_sources": len(all_web_results) + len(news_results)
            }
    

    This class, AdvancedSerpAPI, encapsulates SerpAPI-based search methods (web, news, and images) and helper functions to clean the resulting JSON data. It also integrates a Gemini-1.5-Flash model, via analyze_with_gemini, to generate an AI-driven summary of any collected search data. Additional utilities include specialized Marktechpost tutorial lookups, a “get trending” routine across categories, and a combined “smart research” workflow that stitches together tutorials, web results, news, and Gemini analysis.

    Copy CodeCopiedUse a different Browser
    def demo_marktechpost_tutorials():
        """Demo specifically focused on Marktechpost tutorials"""
       
        searcher = AdvancedSerpAPI(SERPAPI_API_KEY, GEMINI_API_KEY)
       
        print("🚀 Marktechpost Trending Tutorials Finder")
        print("=" * 50)
       
        print("n📚 Demo 1: Trending Marktechpost Tutorials by Category")
        trending_content = searcher.get_trending_marktechpost_content([
            "LangChain", "ChatGPT", "Python", "AI", "MLOps"
        ])
       
        for category, tutorials in trending_content.items():
            print(f"n🔥 Trending {category} Tutorials:")
            for i, tutorial in enumerate(tutorials[:3], 1):
                print(f"  {i}. {tutorial['title']}")
                print(f"     📎 {tutorial['link']}")
                if tutorial['snippet']:
                    print(f"     📝 {tutorial['snippet'][:100]}...")
       
        print("n🎯 Demo 2: Deep Dive - LangChain Tutorials")
        langchain_research = searcher.smart_research("LangChain", focus_marktechpost=True)
       
        print(f"n📊 Research Summary:")
        print(f"Topic: {langchain_research['topic']}")
        print(f"Marktechpost Tutorials Found: {len(langchain_research['marktechpost_tutorials'])}")
        print(f"Total Sources: {langchain_research['total_sources']}")
       
        print(f"n🤖 AI Analysis Preview:")
        print(langchain_research['ai_analysis'][:600] + "..." if len(langchain_research['ai_analysis']) > 600 else langchain_research['ai_analysis'])
       
        print("n📰 Demo 3: Latest AI Trends from Marktechpost")
        ai_trends = searcher.search_marktechpost_tutorials("AI trends 2024 2025", num_results=5)
       
        print("Recent AI trend articles:")
        for i, article in enumerate(ai_trends, 1):
            print(f"{i}. {article['title']}")
            print(f"   🔗 {article['link']}")
    
    
    def demo_advanced_serpapi():
        """Comprehensive demo of SerpAPI capabilities"""
       
        searcher = AdvancedSerpAPI(SERPAPI_API_KEY, GEMINI_API_KEY)
       
        print("🚀 Advanced SerpAPI Tutorial with Gemini Flash")
        print("=" * 50)
       
        print("n📊 Demo 1: Smart Research on AI Technology")
        research_results = searcher.smart_research("artificial intelligence 2024 trends")
       
        print(f"n🔍 Research Summary:")
        print(f"Topic: {research_results['topic']}")
        print(f"Total Sources: {research_results['total_sources']}")
       
        print(f"n🤖 AI Analysis Preview:")
        print(research_results['ai_analysis'][:500] + "..." if len(research_results['ai_analysis']) > 500 else research_results['ai_analysis'])
       
        print("n📰 Demo 2: Recent News Search")
        tech_news = searcher.search_news("technology breakthrough", days_back=7)
       
        print(f"Found {len(tech_news)} recent tech news articles:")
        for i, article in enumerate(tech_news[:3], 1):
            print(f"{i}. {article['title'][:80]}...")
            print(f"   Source: {article['source']} | Date: {article['date']}")
       
        print("n🖼  Demo 3: Image Search")
        space_images = searcher.search_images("space exploration 2024", num_images=5)
       
        print(f"Found {len(space_images)} space-related images:")
        for i, img in enumerate(space_images[:3], 1):
            print(f"{i}. {img['title'][:60]}...")
            print(f"   Source: {img['source']}")
    

    demo_marktechpost_tutorials() initializes the AdvancedSerpAPI class and prints trending tutorials from Marktechpost for a list of categories (LangChain, ChatGPT, Python, AI, MLOps). It then performs a “deep dive” smart research on “LangChain,” showing counts of tutorials and a preview of Gemini’s AI analysis. Finally, it retrieves and lists the top five recent “AI trends 2024–2025” articles from Marktechpost. 

    Also, demo_advanced_serpapi() creates an AdvancedSerpAPI instance but focuses on a broader workflow: it runs smart research on “artificial intelligence 2024 trends” and prints the topic summary and AI analysis snippet. It then performs a news search for “technology breakthrough,” lists the first three articles with sources and dates, and concludes by fetching and displaying a handful of “space exploration 2024” image results.

    Copy CodeCopiedUse a different Browser
    if __name__ == "__main__":
        if SERPAPI_API_KEY == "your_serpapi_key_here" or GEMINI_API_KEY == "your_gemini_key_here":
            print("⚠  Please set your API keys before running the demo!")
            print("1. Get SerpAPI key from: https://serpapi.com")
            print("2. Get Gemini API key from: https://makersuite.google.com")
        else:
            print("🎯 Running Marktechpost-focused demo...")
            demo_marktechpost_tutorials()
           
            print("n" + "="*50)
            print("🌟 Running general demo...")
            demo_advanced_serpapi()
    
    
    def compare_search_engines(query, engines=['google', 'bing', 'duckduckgo']):
        """Compare results across different search engines"""
        results = {}
       
        for engine in engines:
            params = {
                "engine": engine,
                "q": query,
                "api_key": SERPAPI_API_KEY
            }
           
            try:
                search = GoogleSearch(params)
                results[engine] = search.get_dict()
            except Exception as e:
                results[engine] = {"error": str(e)}
       
        return results
    
    
    def trending_searches(location="United States"):
        """Get trending searches"""
        params = {
            "engine": "google_trends_trending_now",
            "api_key": SERPAPI_API_KEY,
            "geo": location
        }
       
        search = GoogleSearch(params)
        return search.get_dict()
    
    
    print("✅ Advanced SerpAPI Tutorial with Marktechpost Focus loaded successfully!")
    print("🔑 Remember to set your API keys before running demos")
    print("📚 New Functions: search_marktechpost_tutorials, get_trending_marktechpost_content")
    print("🎯 Marktechpost-specific features: LangChain, ChatGPT, Python, AI, MLOps tutorials")
    
    
    print("n🚀 Quick Start Examples:")
    print("searcher = AdvancedSerpAPI(SERPAPI_API_KEY, GEMINI_API_KEY)")
    print("langchain_tutorials = searcher.search_marktechpost_tutorials('LangChain')")
    print("trending_ai = searcher.get_trending_marktechpost_content(['AI', 'Python'])")
    print("research = searcher.smart_research('ChatGPT', focus_marktechpost=True)")

    Finally, the section includes a Python “main” guard that first verifies your SerpAPI and Gemini keys, prompting you to obtain them if they’re still placeholders, and otherwise runs the Marktechpost‐focused and general demos in sequence. It also defines two utility functions: compare_search_engines, which queries multiple search engines (Google, Bing, DuckDuckGo) via SerpAPI and returns their raw JSON results or errors, and trending_searches, which fetches today’s trending topics using the Google Trends endpoint. After these definitions, the script prints a brief status message confirming that the tutorial loaded successfully, reminds you to set your API keys, and highlights newly added methods for fetching Marktechpost tutorials and trending content.

    In conclusion, by following this tutorial, users will have a reusable, modular Python class that streamlines web research and analysis, from performing keyword-driven searches to automatically summarizing findings using Gemini-powered AI. The combination of SerpAPI’s reliable search endpoints and Gemini’s natural language understanding enables a seamless “research-to-insights” workflow, ideal for content creators, developers, and technical teams who need to stay up-to-date with the latest tutorials and industry trends.


    Check out the Notebook here. All credit for this research goes to the researchers of this project. Also, feel free to follow us on Twitter and don’t forget to join our 95k+ ML SubReddit and Subscribe to our Newsletter.

    The post A Comprehensive Coding Tutorial for Advanced SerpAPI Integration with Google Gemini-1.5-Flash for Advanced Analytics appeared first on MarkTechPost.

    Source: Read More 

    Facebook Twitter Reddit Email Copy Link
    Previous ArticleCVE-2025-5799 – Tenda AC8 Stack-Based Buffer Overflow Vulnerability
    Next Article Build a serverless audio summarization solution with Amazon Bedrock and Whisper

    Related Posts

    Machine Learning

    How to Evaluate Jailbreak Methods: A Case Study with the StrongREJECT Benchmark

    July 22, 2025
    Machine Learning

    Boolformer: Symbolic Regression of Logic Functions with Transformers

    July 22, 2025
    Leave A Reply Cancel Reply

    For security, use of Google's reCAPTCHA service is required which is subject to the Google Privacy Policy and Terms of Use.

    Continue Reading

    Apple Wallet just went full Bono (but with Brad Pitt this time)

    Development

    CVE-2025-5399 – “Libcurl WebSocket DoS Vulnerability”

    Common Vulnerabilities and Exposures (CVEs)

    Accelerating Go-to-Market with Agile AI Product Development🚀

    Web Development

    7 things you need to know from Xbox’s The Outer Worlds 2 Direct, plus juicy Grounded 2 details for Obsidian’s other sequel

    News & Updates

    Highlights

    CVE-2024-51392 – OpenKnowledgeMaps Headstart Remote Privilege Escalation

    May 29, 2025

    CVE ID : CVE-2024-51392

    Published : May 29, 2025, 5:15 p.m. | 3 hours, 26 minutes ago

    Description : An issue in OpenKnowledgeMaps Headstart v7 allows a remote attacker to escalate privileges via the url parameter of the getPDF.php component

    Severity: 8.8 | HIGH

    Visit the link for more details, such as CVSS details, affected products, timeline, and more…

    Build a financial research assistant using Amazon Q Business and Amazon QuickSight for generative AI–powered insights

    May 14, 2025

    Discord Nitro Now Lets You Keep Avatar Decorations Longer

    April 20, 2025

    Kodeco Podcast: Kotlin Symbol Processing – Podcast V2, S3 E4 [FREE]

    May 8, 2025
    © DevStackTips 2025. All rights reserved.
    • Contact
    • Privacy Policy

    Type above and press Enter to search. Press Esc to cancel.