Close Menu
    DevStackTipsDevStackTips
    • Home
    • News & Updates
      1. Tech & Work
      2. View All

      CodeSOD: A Unique Way to Primary Key

      July 22, 2025

      BrowserStack launches Figma plugin for detecting accessibility issues in design phase

      July 22, 2025

      Parasoft brings agentic AI to service virtualization in latest release

      July 22, 2025

      Node.js vs. Python for Backend: 7 Reasons C-Level Leaders Choose Node.js Talent

      July 21, 2025

      The best CRM software with email marketing in 2025: Expert tested and reviewed

      July 22, 2025

      This multi-port car charger can power 4 gadgets at once – and it’s surprisingly cheap

      July 22, 2025

      I’m a wearables editor and here are the 7 Pixel Watch 4 rumors I’m most curious about

      July 22, 2025

      8 ways I quickly leveled up my Linux skills – and you can too

      July 22, 2025
    • Development
      1. Algorithms & Data Structures
      2. Artificial Intelligence
      3. Back-End Development
      4. Databases
      5. Front-End Development
      6. Libraries & Frameworks
      7. Machine Learning
      8. Security
      9. Software Engineering
      10. Tools & IDEs
      11. Web Design
      12. Web Development
      13. Web Security
      14. Programming Languages
        • PHP
        • JavaScript
      Featured

      The Intersection of Agile and Accessibility – A Series on Designing for Everyone

      July 22, 2025
      Recent

      The Intersection of Agile and Accessibility – A Series on Designing for Everyone

      July 22, 2025

      Zero Trust & Cybersecurity Mesh: Your Org’s Survival Guide

      July 22, 2025

      Execute Ping Commands and Get Back Structured Data in PHP

      July 22, 2025
    • Operating Systems
      1. Windows
      2. Linux
      3. macOS
      Featured

      A Tomb Raider composer has been jailed — His legacy overshadowed by $75k+ in loan fraud

      July 22, 2025
      Recent

      A Tomb Raider composer has been jailed — His legacy overshadowed by $75k+ in loan fraud

      July 22, 2025

      “I don’t think I changed his mind” — NVIDIA CEO comments on H20 AI GPU sales resuming in China following a meeting with President Trump

      July 22, 2025

      Galaxy Z Fold 7 review: Six years later — Samsung finally cracks the foldable code

      July 22, 2025
    • Learning Resources
      • Books
      • Cheatsheets
      • Tutorials & Guides
    Home»Development»Machine Learning»Building AI-Powered Applications Using the Plan → Files → Code Workflow in TinyDev

    Building AI-Powered Applications Using the Plan → Files → Code Workflow in TinyDev

    June 15, 2025

    In this tutorial, we introduce TinyDev class implementation, a minimal yet powerful AI code generation tool that utilizes the Gemini API to transform simple app ideas into comprehensive, structured applications. Designed to run effortlessly in Notebook, TinyDev follows a clean three-phase workflow—Plan → Files → Code—to ensure consistency, functionality, and modular design. Whether building a web interface, a Python backend, or a utility script, TinyDev allows users to describe their project in natural language & receive ready-to-run code files, automatically generated and saved in an organized directory. This makes it an ideal starting point for rapid prototyping or learning how AI can assist in development tasks.

    Copy CodeCopiedUse a different Browser
    import google.generativeai as genai
    import os
    import json
    import re
    from pathlib import Path
    from typing import List, Dict

    We begin by importing essential libraries required for the TinyDev code generator. google.generativeai is used to interact with the Gemini API, while standard libraries like os, json, and re support file handling and text processing. Path and type hints from typing ensure clean file operations and better code readability.

    Copy CodeCopiedUse a different Browser
    class TinyDev:
       """
       TinyDev: A lightweight AI code generator inspired by smol-dev
       Uses Gemini API to generate complete applications from simple prompts
       Follows the proven three-phase workflow: Plan → Files → Code
       """
      
       def __init__(self, api_key: str, model: str = "gemini-1.5-flash"):
           genai.configure(api_key=api_key)
           self.model = genai.GenerativeModel(model)
           self.generation_config = {
               'temperature': 0.1,
               'top_p': 0.8,
               'max_output_tokens': 8192,
           }
      
       def plan(self, prompt: str) -> str:
           """
           Phase 1: Generate project plan and shared dependencies
           Creates the foundation for consistent code generation
           """
           planning_prompt = f"""As an AI developer, you’re building a tool that automatically generates code tailored to the user’s needs.
    
    
    the program you are writing is based on the following description:
    {prompt}
    
    
    the files we write will be generated by a python script. the goal is for us to all work together to write a program that will write the code for the user.
    
    
    since we are working together, we need to understand what our shared dependencies are. this includes:
    - import statements we all need to use
    - variable names that are shared between files
    - functions that are called from one file to another
    - any other shared state
    
    
    this is the most critical part of the process, if we don't get this right, the generated code will not work properly.
    
    
    please output a markdown file called shared_dependencies.md that lists all of the shared dependencies.
    
    
    the dependencies should be organized as:
    1. shared variables (globals, constants)
    2. shared functions (function signatures)
    3. shared classes (class names and key methods)
    4. shared imports (modules to import)
    5. shared DOM element ids (if web project)
    6. shared file paths/names
    
    
    be EXHAUSTIVE in your analysis. every file must be able to import or reference these shared items."""
    
    
           response = self.model.generate_content(
               planning_prompt,
               generation_config=self.generation_config
           )
           return response.text
    
    
       def specify_file_paths(self, prompt: str, shared_deps: str) -> List[str]:
           """
           Phase 2: Determine what files need to be created
           """
           files_prompt = f"""As an AI developer, you’re building a tool that automatically generates code tailored to the user’s needs.
    
    
    the program:
    {prompt}
    
    
    the shared dependencies:
    {shared_deps}
    
    
    Based on the program description and shared dependencies, return a JSON array of the filenames that should be written.
    
    
    Only return the JSON array, nothing else. The JSON should be an array of strings representing file paths.
    
    
    For example, for a simple web app you might return:
    ["index.html", "styles.css", "script.js"]
    
    
    For a Python project you might return:
    ["main.py", "utils.py", "config.py", "requirements.txt"]
    
    
    JSON array:"""
    
    
           response = self.model.generate_content(
               files_prompt,
               generation_config=self.generation_config
           )
          
           try:
               json_match = re.search(r'[.*?]', response.text, re.DOTALL)
               if json_match:
                   files = json.loads(json_match.group())
                   return [f for f in files if isinstance(f, str)]
               else:
                   lines = [line.strip() for line in response.text.split('n') if line.strip()]
                   files = []
                   for line in lines:
                       if '.' in line and not line.startswith('#'):
                           file = re.sub(r'[^w-_./]', '', line)
                           if file:
                               files.append(file)
                   return files[:10] 
           except Exception as e:
               print(f"Error parsing files: {e}")
               return ["main.py", "README.md"]
    
    
       def generate_code_sync(self, prompt: str, shared_deps: str, filename: str) -> str:
           """
           Phase 3: Generate code for individual files
           """
           code_prompt = f"""As an AI developer, you’re building a tool that automatically generates code tailored to the user’s needs..
    
    
    the program:
    {prompt}
    
    
    the shared dependencies:
    {shared_deps}
    
    
    Please write the file {filename}.
    
    
    Remember that your job is to write the code for {filename} ONLY. Do not write any other files.
    
    
    the code should be fully functional. meaning:
    - all imports should be correct
    - all variable references should be correct 
    - all function calls should be correct
    - the code should be syntactically correct
    - the code should be logically correct
    
    
    Make sure to implement every part of the functionality described in the program description.
    
    
    DO NOT include ``` code fences in your response. Return only the raw code.
    
    
    Here is the code for {filename}:"""
    
    
           response = self.model.generate_content(
               code_prompt,
               generation_config=self.generation_config
           )
          
           code = response.text
           code = re.sub(r'^```[w]*n', '', code, flags=re.MULTILINE)
           code = re.sub(r'n```$', '', code, flags=re.MULTILINE)
          
           return code.strip()
    
    
       def create_app(self, prompt: str, output_dir: str = "/content/generated_app") -> Dict:
           """
           Main workflow: Transform a simple prompt into a complete application
           """
           print(f"🚀 TinyDev workflow starting...")
           print(f"📝 Prompt: {prompt}")
          
           print("n📋 Step 1: Planning shared dependencies...")
           shared_deps = self.plan(prompt)
           print("✅ Dependencies planned")
          
           print("n📁 Step 2: Determining file structure...")
           file_paths = self.specify_file_paths(prompt, shared_deps)
           print(f"📄 Files to generate: {file_paths}")
          
           Path(output_dir).mkdir(parents=True, exist_ok=True)
          
           print(f"n⚡ Step 3: Generating {len(file_paths)} files...")
           results = {
               'prompt': prompt,
               'shared_deps': shared_deps,
               'files': {},
               'output_dir': output_dir
           }
          
           with open(Path(output_dir) / "shared_dependencies.md", 'w') as f:
               f.write(shared_deps)
          
           for filename in file_paths:
               print(f"  🔧 Generating {filename}...")
               try:
                   code = self.generate_code_sync(prompt, shared_deps, filename)
                  
                   file_path = Path(output_dir) / filename
                   file_path.parent.mkdir(parents=True, exist_ok=True)
                  
                   with open(file_path, 'w', encoding='utf-8') as f:
                       f.write(code)
                  
                   results['files'][filename] = code
                   print(f"  ✅ {filename} created ({len(code)} chars)")
                  
               except Exception as e:
                   print(f"  ❌ Error generating {filename}: {e}")
                   results['files'][filename] = f"# Error: {e}"
          
           readme = f"""# Generated by TinyDev (Gemini-Powered)
    
    
    ## Original Prompt
    {prompt}
    
    
    ## Generated Files
    {chr(10).join(f'- {f}' for f in file_paths)}
    
    
    ## About TinyDev
    TinyDev is inspired by smol-ai/developer but uses free Gemini API.
    It follows the proven three-phase workflow: Plan → Files → Code
    
    
    ## Usage
    Check individual files for specific usage instructions.
    
    
    Generated on: {os.popen('date').read().strip()}
    """
          
           with open(Path(output_dir) / "README.md", 'w') as f:
               f.write(readme)
          
           print(f"n🎉 Complete! Generated {len(results['files'])} files in {output_dir}")
           return results

    The TinyDev class encapsulates the full logic of an AI-powered code generator using the Gemini API. It implements a structured three-phase workflow: first, it analyzes the user prompt to generate shared dependencies (plan); next, it identifies which files are needed for the application (specify_file_paths); and finally, it generates functional code for each file individually (generate_code_sync). The create_app method brings everything together by orchestrating the full app generation pipeline and saving the results, including code files and a detailed README, into a specified output directory, offering a complete, ready-to-use application scaffold from a single prompt.

    Copy CodeCopiedUse a different Browser
    def demo_tinydev():
       """Demo the TinyDev code generator"""
      
       api_key = "Use Your API Key here"
      
       if api_key == "YOUR_GEMINI_API_KEY_HERE":
           print("❌ Please set your Gemini API key!")
           print("Get one free at: https://makersuite.google.com/app/apikey")
           return None
      
       tiny_dev = TinyDev(api_key)
      
       demo_prompts = [
           "a simple HTML/JS/CSS tic tac toe game",
           "a Python web scraper that gets the latest news from multiple sources",
           "a responsive landing page for a local coffee shop with contact form",
           "a Flask REST API for managing a todo list",
           "a JavaScript calculator with a modern UI"
       ]
      
       print("🤖 TinyDev - AI Code Generator")
       print("=" * 50)
       print("Inspired by smol-ai/developer, powered by Gemini API")
       print(f"Available demo projects:")
      
       for i, prompt in enumerate(demo_prompts, 1):
           print(f"{i}. {prompt}")
      
       demo_prompt = demo_prompts[0] 
       print(f"n🎯 Running demo: {demo_prompt}")
      
       try:
           results = tiny_dev.create_app(demo_prompt)
          
           print(f"n📊 Results Summary:")
           print(f"  📝 Prompt: {results['prompt']}")
           print(f"  📁 Output: {results['output_dir']}")
           print(f"  📄 Files: {len(results['files'])}")
          
           print(f"n📋 Generated Files:")
           for filename in results['files'].keys():
               print(f"  - {filename}")
          
           if results['files']:
               preview_file = list(results['files'].keys())[0]
               preview_code = results['files'][preview_file]
               print(f"n👁  Preview of {preview_file}:")
               print("-" * 40)
               print(preview_code[:400] + "..." if len(preview_code) > 400 else preview_code)
               print("-" * 40)
          
           print(f"n💡 This uses the same proven workflow as smol-ai/developer!")
           print(f"📂 Check {results['output_dir']} for all generated files")
          
           return results
          
       except Exception as e:
           print(f"❌ Demo failed: {e}")
           return None

    The demo_tinydev() function showcases TinyDev’s capabilities by running a predefined demo using one of several sample prompts, such as generating a Tic Tac Toe game or a Python news scraper. It initializes the TinyDev class with a Gemini API key, selects the first prompt from a list of project ideas, and guides the user through the full code generation pipeline, including planning shared dependencies, defining file structure, and generating code. After execution, it summarizes the output, previews a sample file, and points to the directory where the complete app has been saved.

    Copy CodeCopiedUse a different Browser
    def interactive_tinydev():
       """Interactive version where you can try your own prompts"""
       api_key = input("🔑 Enter your Gemini API key: ").strip()
      
       if not api_key:
           print("❌ API key required!")
           return
      
       tiny_dev = TinyDev(api_key)
      
       print("n🎮 Interactive TinyDev Mode")
       print("Type your app ideas and watch them come to life!")
      
       while True:
           prompt = input("n💭 Describe your app (or 'quit'): ").strip()
          
           if prompt.lower() in ['quit', 'exit', 'q']:
               print("👋 Goodbye!")
               break
          
           if prompt:
               try:
                   results = tiny_dev.create_app(prompt, f"/content/app_{hash(prompt) % 10000}")
                   print(f"✅ Success! Check {results['output_dir']}")
               except Exception as e:
                   print(f"❌ Error: {e}")
    
    
    print("🎬 TinyDev - AI Code Generator Ready!")
    print("Inspired by smol-ai/developer, powered by free Gemini API")
    print("nTo run demo: demo_tinydev()")
    print("To try interactive mode: interactive_tinydev()")

    The interactive_tinydev() function allows users to generate applications from their custom prompts in real time. After entering a valid Gemini API key, users can describe any app idea, and TinyDev will develop the complete project, code, structure, and supporting files automatically. The process continues in a loop until the user types ‘quit’. This interactive mode enables hands-on experimentation and rapid prototyping from natural language descriptions.

    Copy CodeCopiedUse a different Browser
    demo_tinydev()

    Finally, calling demo_tinydev() runs a predefined demonstration of TinyDev using a sample app prompt. It walks through the full workflow, planning, file structure creation, and code generation, to showcase how the tool automatically builds a complete application from a simple idea.

    In conclusion, TinyDev class demonstrates the potential of using AI to automate application scaffolding with remarkable accuracy and efficiency. By breaking down the code generation process into intuitive phases, it ensures that outputs are logically sound, well-structured, and aligned with the user’s intent. Whether you’re exploring new app ideas or seeking to accelerate development, TinyDev provides a lightweight and user-friendly solution powered by the Gemini models. It’s a practical tool for developers looking to integrate AI into their workflow without unnecessary complexity or overhead.


    Check out the Notebook here. All credit for this research goes to the researchers of this project. Also, feel free to follow us on Twitter and don’t forget to join our 100k+ ML SubReddit and Subscribe to our Newsletter.

    The post Building AI-Powered Applications Using the Plan → Files → Code Workflow in TinyDev appeared first on MarkTechPost.

    Source: Read More 

    Facebook Twitter Reddit Email Copy Link
    Previous ArticleOThink-R1: A Dual-Mode Reasoning Framework to Cut Redundant Computation in LLMs
    Next Article AI-Generated Ad Created with Google’s Veo3 Airs During NBA Finals, Slashing Production Costs by 95%

    Related Posts

    Machine Learning

    How to Evaluate Jailbreak Methods: A Case Study with the StrongREJECT Benchmark

    July 22, 2025
    Machine Learning

    Boolformer: Symbolic Regression of Logic Functions with Transformers

    July 22, 2025
    Leave A Reply Cancel Reply

    For security, use of Google's reCAPTCHA service is required which is subject to the Google Privacy Policy and Terms of Use.

    Continue Reading

    Introducing Muzli Me

    Web Development

    CVE-2018-13372 – Apache HTTP Server Unvalidated User Input

    Common Vulnerabilities and Exposures (CVEs)

    CVE-2025-6938 – “Code-projects Simple Pizza Ordering System SQL Injection Vulnerability”

    Common Vulnerabilities and Exposures (CVEs)

    Build a Google Calendar Clone with PHP, MySql & JavaScript

    Development

    Highlights

    How I personalized my ChatGPT conversations – why it’s a game changer

    July 10, 2025

    Customizing and personalizing ChatGPT can influence how the AI acts in a conversation with you.…

    Now GTA 6 has been delayed into 2026, what’s your most hyped game for the rest of 2025? — Weekend Discussion 💬

    May 2, 2025

    CVE-2025-30418 – NI Circuit Design Suite SymbolEditor Out-of-Bounds Write Vulnerability

    May 15, 2025

    “That was really frustrating for us on the dev side.” Halo dev explains how one of the Xbox series’ biggest controversies came to be

    April 25, 2025
    © DevStackTips 2025. All rights reserved.
    • Contact
    • Privacy Policy

    Type above and press Enter to search. Press Esc to cancel.