Close Menu
    DevStackTipsDevStackTips
    • Home
    • News & Updates
      1. Tech & Work
      2. View All

      CodeSOD: A Unique Way to Primary Key

      July 22, 2025

      BrowserStack launches Figma plugin for detecting accessibility issues in design phase

      July 22, 2025

      Parasoft brings agentic AI to service virtualization in latest release

      July 22, 2025

      Node.js vs. Python for Backend: 7 Reasons C-Level Leaders Choose Node.js Talent

      July 21, 2025

      The best CRM software with email marketing in 2025: Expert tested and reviewed

      July 22, 2025

      This multi-port car charger can power 4 gadgets at once – and it’s surprisingly cheap

      July 22, 2025

      I’m a wearables editor and here are the 7 Pixel Watch 4 rumors I’m most curious about

      July 22, 2025

      8 ways I quickly leveled up my Linux skills – and you can too

      July 22, 2025
    • Development
      1. Algorithms & Data Structures
      2. Artificial Intelligence
      3. Back-End Development
      4. Databases
      5. Front-End Development
      6. Libraries & Frameworks
      7. Machine Learning
      8. Security
      9. Software Engineering
      10. Tools & IDEs
      11. Web Design
      12. Web Development
      13. Web Security
      14. Programming Languages
        • PHP
        • JavaScript
      Featured

      The Intersection of Agile and Accessibility – A Series on Designing for Everyone

      July 22, 2025
      Recent

      The Intersection of Agile and Accessibility – A Series on Designing for Everyone

      July 22, 2025

      Zero Trust & Cybersecurity Mesh: Your Org’s Survival Guide

      July 22, 2025

      Execute Ping Commands and Get Back Structured Data in PHP

      July 22, 2025
    • Operating Systems
      1. Windows
      2. Linux
      3. macOS
      Featured

      A Tomb Raider composer has been jailed — His legacy overshadowed by $75k+ in loan fraud

      July 22, 2025
      Recent

      A Tomb Raider composer has been jailed — His legacy overshadowed by $75k+ in loan fraud

      July 22, 2025

      “I don’t think I changed his mind” — NVIDIA CEO comments on H20 AI GPU sales resuming in China following a meeting with President Trump

      July 22, 2025

      Galaxy Z Fold 7 review: Six years later — Samsung finally cracks the foldable code

      July 22, 2025
    • Learning Resources
      • Books
      • Cheatsheets
      • Tutorials & Guides
    Home»Development»Artificial Intelligence»Accelerating scientific discovery with AI

    Accelerating scientific discovery with AI

    July 1, 2025

    Several researchers have taken a broad view of scientific progress over the last 50 years and come to the same troubling conclusion: Scientific productivity is declining. It’s taking more time, more funding, and larger teams to make discoveries that once came faster and cheaper. Although a variety of explanations have been offered for the slowdown, one is that, as research becomes more complex and specialized, scientists must spend more time reviewing publications, designing sophisticated experiments, and analyzing data.

    Now, the philanthropically funded research lab FutureHouse is seeking to accelerate scientific research with an AI platform designed to automate many of the critical steps on the path toward scientific progress. The platform is made up of a series of AI agents specialized for tasks including information retrieval, information synthesis, chemical synthesis design, and data analysis.

    FutureHouse founders Sam Rodriques PhD ’19 and Andrew White believe that by giving every scientist access to their AI agents, they can break through the biggest bottlenecks in science and help solve some of humanity’s most pressing problems.

    “Natural language is the real language of science,” Rodriques says. “Other people are building foundation models for biology, where machine learning models speak the language of DNA or proteins, and that’s powerful. But discoveries aren’t represented in DNA or proteins. The only way we know how to represent discoveries, hypothesize, and reason is with natural language.”

    Finding big problems

    For his PhD research at MIT, Rodriques sought to understand the inner workings of the brain in the lab of Professor Ed Boyden.

    “The entire idea behind FutureHouse was inspired by this impression I got during my PhD at MIT that even if we had all the information we needed to know about how the brain works, we wouldn’t know it because nobody has time to read all the literature,” Rodriques explains. “Even if they could read it all, they wouldn’t be able to assemble it into a comprehensive theory. That was a foundational piece of the FutureHouse puzzle.”

    Rodriques wrote about the need for new kinds of large research collaborations as the last chapter of his PhD thesis in 2019, and though he spent some time running a lab at the Francis Crick Institute in London after graduation, he found himself gravitating toward broad problems in science that no single lab could take on.

    “I was interested in how to automate or scale up science and what kinds of new organizational structures or technologies would unlock higher scientific productivity,” Rodriques says.

    When Chat-GPT 3.5 was released in November 2022, Rodriques saw a path toward more powerful models that could generate scientific insights on their own. Around that time, he also met Andrew White, a computational chemist at the University of Rochester who had been granted early access to Chat-GPT 4. White had built the first large language agent for science, and the researchers joined forces to start FutureHouse.

    The founders started out wanting to create distinct AI tools for tasks like literature searches, data analysis, and hypothesis generation. They began with data collection, eventually releasing PaperQA in September 2024, which Rodriques calls the best AI agent in the world for retrieving and summarizing information in scientific literature. Around the same time, they released Has Anyone, a tool that lets scientists determine if anyone has conducted specific experiments or explored specific hypotheses.

    “We were just sitting around asking, ‘What are the kinds of questions that we as scientists ask all the time?’” Rodriques recalls.

    When FutureHouse officially launched its platform on May 1 of this year, it rebranded some of its tools. Paper QA is now Crow, and Has Anyone is now called Owl. Falcon is an agent capable of compiling and reviewing more sources than Crow. Another new agent, Phoenix, can use specialized tools to help researchers plan chemistry experiments. And Finch is an agent designed to automate data driven discovery in biology.

    On May 20, the company demonstrated a multi-agent scientific discovery workflow to automate key steps of the scientific process and identify a new therapeutic candidate for dry age-related macular degeneration (dAMD), a leading cause of irreversible blindness worldwide. In June, FutureHouse released ether0, a 24B open-weights reasoning model for chemistry.

    “You really have to think of these agents as part of a larger system,” Rodriques says. “Soon, the literature search agents will be integrated with the data analysis agent, the hypothesis generation agent, an experiment planning agent, and they will all be engineered to work together seamlessly.”

    Agents for everyone

    Today anyone can access FutureHouse’s agents at platform.futurehouse.org. The company’s platform launch generated excitement in the industry, and stories have started to come in about scientists using the agents to accelerate research.

    One of FutureHouse’s scientists used the agents to identify a gene that could be associated with polycystic ovary syndrome and come up with a new treatment hypothesis for the disease. Another researcher at the Lawrence Berkeley National Laboratory used Crow to create an AI assistant capable of searching the PubMed research database for information related to Alzheimer’s disease.

    Scientists at another research institution have used the agents to conduct systematic reviews of genes relevant to Parkinson’s disease, finding FutureHouse’s agents performed better than general agents.

    Rodriques says scientists who think of the agents less like Google Scholar and more like a smart assistant scientist get the most out of the platform.

    “People who are looking for speculation tend to get more mileage out of Chat-GPT o3 deep research, while people who are looking for really faithful literature reviews tend to get more out of our agents,” Rodriques explains.

    Rodriques also thinks FutureHouse will soon get to a point where its agents can use the raw data from research papers to test the reproducibility of its results and verify conclusions.

    In the longer run, to keep scientific progress marching forward, Rodriques says FutureHouse is working on embedding its agents with tacit knowledge to be able to perform more sophisticated analyses while also giving the agents the ability to use computational tools to explore hypotheses.

    “There have been so many advances around foundation models for science and around language models for proteins and DNA, that we now need to give our agents access to those models and all of the other tools people commonly use to do science,” Rodriques says. “Building the infrastructure to allow agents to use more specialized tools for science is going to be critical.”

    Source: Read More 

    Facebook Twitter Reddit Email Copy Link
    Previous ArticleMicrosoft patches Vista startup-sound bug before it hits Windows 11 production
    Next Article The secret to Linux’s remarkable journey from one dev’s hobby to 40 million lines of code

    Related Posts

    Artificial Intelligence

    Scaling Up Reinforcement Learning for Traffic Smoothing: A 100-AV Highway Deployment

    July 22, 2025
    Repurposing Protein Folding Models for Generation with Latent Diffusion
    Artificial Intelligence

    Repurposing Protein Folding Models for Generation with Latent Diffusion

    July 22, 2025
    Leave A Reply Cancel Reply

    For security, use of Google's reCAPTCHA service is required which is subject to the Google Privacy Policy and Terms of Use.

    Continue Reading

    Windows 11 Now Runs on iPad in EU via UTM Virtual Machine

    Security

    Zoobook’s Customizable EHR: Why Your System Should Adapt to You

    Web Development

    GraphCast: AI model for faster and more accurate global weather forecasting

    Artificial Intelligence

    Microsoft Patches Wormable RCE Vulnerability in Windows and Windows Server

    Security

    Highlights

    CVE-2025-36104 – IBM Storage Scale Information Disclosure

    July 12, 2025

    CVE ID : CVE-2025-36104

    Published : July 12, 2025, 12:15 p.m. | 6 hours, 26 minutes ago

    Description : IBM Storage Scale 5.2.3.0 and 5.2.3.1 could allow an authenticated user to obtain sensitive information from files due to the insecure permissions inherited through the SMB protocol.

    Severity: 6.5 | MEDIUM

    Visit the link for more details, such as CVSS details, affected products, timeline, and more…

    Perficient Included in IDC Market Glance: Payer, 1Q25

    April 2, 2025

    Anthropic’s MCP Server Vulnerability Allowed Attackers to Escape Sandbox and Execute Code

    July 3, 2025

    IBM introduces a mainframe for AI: The LinuxONE Emperor 5

    May 6, 2025
    © DevStackTips 2025. All rights reserved.
    • Contact
    • Privacy Policy

    Type above and press Enter to search. Press Esc to cancel.