Close Menu
    DevStackTipsDevStackTips
    • Home
    • News & Updates
      1. Tech & Work
      2. View All

      CodeSOD: A Unique Way to Primary Key

      July 22, 2025

      BrowserStack launches Figma plugin for detecting accessibility issues in design phase

      July 22, 2025

      Parasoft brings agentic AI to service virtualization in latest release

      July 22, 2025

      Node.js vs. Python for Backend: 7 Reasons C-Level Leaders Choose Node.js Talent

      July 21, 2025

      The best CRM software with email marketing in 2025: Expert tested and reviewed

      July 22, 2025

      This multi-port car charger can power 4 gadgets at once – and it’s surprisingly cheap

      July 22, 2025

      I’m a wearables editor and here are the 7 Pixel Watch 4 rumors I’m most curious about

      July 22, 2025

      8 ways I quickly leveled up my Linux skills – and you can too

      July 22, 2025
    • Development
      1. Algorithms & Data Structures
      2. Artificial Intelligence
      3. Back-End Development
      4. Databases
      5. Front-End Development
      6. Libraries & Frameworks
      7. Machine Learning
      8. Security
      9. Software Engineering
      10. Tools & IDEs
      11. Web Design
      12. Web Development
      13. Web Security
      14. Programming Languages
        • PHP
        • JavaScript
      Featured

      The Intersection of Agile and Accessibility – A Series on Designing for Everyone

      July 22, 2025
      Recent

      The Intersection of Agile and Accessibility – A Series on Designing for Everyone

      July 22, 2025

      Zero Trust & Cybersecurity Mesh: Your Org’s Survival Guide

      July 22, 2025

      Execute Ping Commands and Get Back Structured Data in PHP

      July 22, 2025
    • Operating Systems
      1. Windows
      2. Linux
      3. macOS
      Featured

      A Tomb Raider composer has been jailed — His legacy overshadowed by $75k+ in loan fraud

      July 22, 2025
      Recent

      A Tomb Raider composer has been jailed — His legacy overshadowed by $75k+ in loan fraud

      July 22, 2025

      “I don’t think I changed his mind” — NVIDIA CEO comments on H20 AI GPU sales resuming in China following a meeting with President Trump

      July 22, 2025

      Galaxy Z Fold 7 review: Six years later — Samsung finally cracks the foldable code

      July 22, 2025
    • Learning Resources
      • Books
      • Cheatsheets
      • Tutorials & Guides
    Home»Development»Artificial Intelligence»How to more efficiently study complex treatment interactions

    How to more efficiently study complex treatment interactions

    July 16, 2025

    MIT researchers have developed a new theoretical framework for studying the mechanisms of treatment interactions. Their approach allows scientists to efficiently estimate how combinations of treatments will affect a group of units, such as cells, enabling a researcher to perform fewer costly experiments while gathering more accurate data.

    As an example, to study how interconnected genes affect cancer cell growth, a biologist might need to use a combination of treatments to target multiple genes at once. But because there could be billions of potential combinations for each round of the experiment, choosing a subset of combinations to test might bias the data their experiment generates. 

    In contrast, the new framework considers the scenario where the user can efficiently design an unbiased experiment by assigning all treatments in parallel, and can control the outcome by adjusting the rate of each treatment.

    The MIT researchers theoretically proved a near-optimal strategy in this framework and performed a series of simulations to test it in a multiround experiment. Their method minimized the error rate in each instance.

    This technique could someday help scientists better understand disease mechanisms and develop new medicines to treat cancer or genetic disorders.

    “We’ve introduced a concept people can think more about as they study the optimal way to select combinatorial treatments at each round of an experiment. Our hope is this can someday be used to solve biologically relevant questions,” says graduate student Jiaqi Zhang, an Eric and Wendy Schmidt Center Fellow and co-lead author of a paper on this experimental design framework.

    She is joined on the paper by co-lead author Divya Shyamal, an MIT undergraduate; and senior author Caroline Uhler, the Andrew and Erna Viterbi Professor of Engineering in EECS and the MIT Institute for Data, Systems, and Society (IDSS), who is also director of the Eric and Wendy Schmidt Center and a researcher at MIT’s Laboratory for Information and Decision Systems (LIDS). The research was recently presented at the International Conference on Machine Learning.

    Simultaneous treatments

    Treatments can interact with each other in complex ways. For instance, a scientist trying to determine whether a certain gene contributes to a particular disease symptom may have to target several genes simultaneously to study the effects.

    To do this, scientists use what are known as combinatorial perturbations, where they apply multiple treatments at once to the same group of cells.

    “Combinatorial perturbations will give you a high-level network of how different genes interact, which provides an understanding of how a cell functions,” Zhang explains.

    Since genetic experiments are costly and time-consuming, the scientist aims to select the best subset of treatment combinations to test, which is a steep challenge due to the huge number of possibilities.

    Picking a suboptimal subset can generate biased results by focusing only on combinations the user selected in advance.

    The MIT researchers approached this problem differently by looking at a probabilistic framework. Instead of focusing on a selected subset, each unit randomly takes up combinations of treatments based on user-specified dosage levels for each treatment.

    The user sets dosage levels based on the goal of their experiment — perhaps this scientist wants to study the effects of four different drugs on cell growth. The probabilistic approach generates less biased data because it does not restrict the experiment to a predetermined subset of treatments.

    The dosage levels are like probabilities, and each cell receives a random combination of treatments. If the user sets a high dosage, it is more likely most of the cells will take up that treatment. A smaller subset of cells will take up that treatment if the dosage is low.

    “From there, the question is how do we design the dosages so that we can estimate the outcomes as accurately as possible? This is where our theory comes in,” Shyamal adds.

    Their theoretical framework shows the best way to design these dosages so one can learn the most about the characteristic or trait they are studying.

    After each round of the experiment, the user collects the results and feeds those back into the experimental framework. It will output the ideal dosage strategy for the next round, and so on, actively adapting the strategy over multiple rounds.

    Optimizing dosages, minimizing error

    The researchers proved their theoretical approach generates optimal dosages, even when the dosage levels are affected by a limited supply of treatments or when noise in the experimental outcomes varies at each round.

    In simulations, this new approach had the lowest error rate when comparing estimated and actual outcomes of multiround experiments, outperforming two baseline methods.

    In the future, the researchers want to enhance their experimental framework to consider interference between units and the fact that certain treatments can lead to selection bias. They would also like to apply this technique in a real experimental setting.

    “This is a new approach to a very interesting problem that is hard to solve. Now, with this new framework in hand, we can think more about the best way to design experiments for many different applications,” Zhang says.

    This research is funded, in part, by the Advanced Undergraduate Research Opportunities Program at MIT, Apple, the National Institutes of Health, the Office of Naval Research, the Department of Energy, the Eric and Wendy Schmidt Center at the Broad Institute, and a Simons Investigator Award.

    Source: Read More 

    Facebook Twitter Reddit Email Copy Link
    Previous ArticleCVE-2025-26186 – openSIS SQL Injection Vulnerability
    Next Article Critical Sudo Vulnerabilities Let Local Users Gain Root Access on Linux, Impacting Major Distros

    Related Posts

    Repurposing Protein Folding Models for Generation with Latent Diffusion
    Artificial Intelligence

    Repurposing Protein Folding Models for Generation with Latent Diffusion

    July 22, 2025
    Artificial Intelligence

    Scaling Up Reinforcement Learning for Traffic Smoothing: A 100-AV Highway Deployment

    July 22, 2025
    Leave A Reply Cancel Reply

    For security, use of Google's reCAPTCHA service is required which is subject to the Google Privacy Policy and Terms of Use.

    Continue Reading

    Cloudflare announces remote MCP server to reduce barriers to creating AI agents

    Tech & Work

    How to Know When You Need Mental Help: Signs You Shouldn’t Ignore

    Web Development

    Pulumi IDP provides developers with faster access to self-service cloud infrastructure provisioning

    Tech & Work

    I used every Samsung Galaxy Watch 8 Series model – and my favorite isn’t the Ultra

    News & Updates

    Highlights

    Next.js Flaw (CVE-2025-49826, CVSS 7.5): Cache Poisoning Leads to Denial-of-Service

    July 3, 2025

    Next.js Flaw (CVE-2025-49826, CVSS 7.5): Cache Poisoning Leads to Denial-of-Service

    A cache poisoning vulnerability (CVE-2025-49826) with a CVSS score of 7.5 has been disclosed in Next.js, the popular React-based web development framework. The flaw, found in versions >=15.1.0
    Read more

    Published Date:
    Jul 04, 2025 (3 hours, 1 minute ago)

    Vulnerabilities has been mentioned in this article.

    CVE-2025-49826

    CVE-2025-49713

    CVE-2025-6554

    CVE-2025-48947

    CVE-2025-29927

    CVE-2024-56332

    CVE-2024-51479

    CVE-2024-46982

    The Chanakya Code: Ancient Intelligence Meets Modern Digital Marketing for Unstoppable Success

    June 11, 2025

    Windows 11 Installation Assistant Download: 2025 Guide

    June 23, 2025

    CVE-2025-27453 – Apache PHP HttpOnly Cookie Access Vulnerability

    July 3, 2025
    © DevStackTips 2025. All rights reserved.
    • Contact
    • Privacy Policy

    Type above and press Enter to search. Press Esc to cancel.