Close Menu
    DevStackTipsDevStackTips
    • Home
    • News & Updates
      1. Tech & Work
      2. View All

      CodeSOD: A Unique Way to Primary Key

      July 22, 2025

      BrowserStack launches Figma plugin for detecting accessibility issues in design phase

      July 22, 2025

      Parasoft brings agentic AI to service virtualization in latest release

      July 22, 2025

      Node.js vs. Python for Backend: 7 Reasons C-Level Leaders Choose Node.js Talent

      July 21, 2025

      The best CRM software with email marketing in 2025: Expert tested and reviewed

      July 22, 2025

      This multi-port car charger can power 4 gadgets at once – and it’s surprisingly cheap

      July 22, 2025

      I’m a wearables editor and here are the 7 Pixel Watch 4 rumors I’m most curious about

      July 22, 2025

      8 ways I quickly leveled up my Linux skills – and you can too

      July 22, 2025
    • Development
      1. Algorithms & Data Structures
      2. Artificial Intelligence
      3. Back-End Development
      4. Databases
      5. Front-End Development
      6. Libraries & Frameworks
      7. Machine Learning
      8. Security
      9. Software Engineering
      10. Tools & IDEs
      11. Web Design
      12. Web Development
      13. Web Security
      14. Programming Languages
        • PHP
        • JavaScript
      Featured

      The Intersection of Agile and Accessibility – A Series on Designing for Everyone

      July 22, 2025
      Recent

      The Intersection of Agile and Accessibility – A Series on Designing for Everyone

      July 22, 2025

      Zero Trust & Cybersecurity Mesh: Your Org’s Survival Guide

      July 22, 2025

      Execute Ping Commands and Get Back Structured Data in PHP

      July 22, 2025
    • Operating Systems
      1. Windows
      2. Linux
      3. macOS
      Featured

      A Tomb Raider composer has been jailed — His legacy overshadowed by $75k+ in loan fraud

      July 22, 2025
      Recent

      A Tomb Raider composer has been jailed — His legacy overshadowed by $75k+ in loan fraud

      July 22, 2025

      “I don’t think I changed his mind” — NVIDIA CEO comments on H20 AI GPU sales resuming in China following a meeting with President Trump

      July 22, 2025

      Galaxy Z Fold 7 review: Six years later — Samsung finally cracks the foldable code

      July 22, 2025
    • Learning Resources
      • Books
      • Cheatsheets
      • Tutorials & Guides
    Home»Development»Machine Learning»T* and LV-Haystack: A Spatially-Guided Temporal Search Framework for Efficient Long-Form Video Understanding

    T* and LV-Haystack: A Spatially-Guided Temporal Search Framework for Efficient Long-Form Video Understanding

    April 10, 2025
    T* and LV-Haystack: A Spatially-Guided Temporal Search Framework for Efficient Long-Form Video Understanding

    Understanding long-form videos—ranging from minutes to hours—presents a major challenge in computer vision, especially as video understanding tasks expand beyond short clips. One of the key difficulties lies in efficiently identifying the few relevant frames from thousands within a lengthy video necessary to answer a given query. Most VLMs, such as LLaVA and Tarsier, process hundreds of tokens per image, making frame-by-frame analysis of long videos computationally expensive. To address this, a new paradigm known as temporal search has gained prominence. Unlike traditional temporal localization, which typically identifies continuous segments within a video, temporal search aims to retrieve a sparse set of highly relevant frames dispersed across the entire timeline—akin to finding a “needle in a haystack.”

    While advancements in attention mechanisms and video transformers have improved temporal modeling, these methods still face limitations in capturing long-range dependencies. Some approaches attempt to overcome this by compressing video data or selecting specific frames to reduce the input size. Although benchmarks for long-video understanding exist, they mostly evaluate performance based on downstream question-answering tasks rather than directly assessing the effectiveness of temporal search. In contrast, the emerging focus on keyframe selection and fine-grained frame retrieval—ranging from glance-based to caption-guided methods—offers a more targeted and efficient approach to understanding long-form video content.

    Stanford, Northwestern, and Carnegie Mellon researchers revisited temporal search for long-form video understanding, introducing LV-HAYSTACK—a large benchmark with 480 hours of real-world videos and over 15,000 annotated QA instances. They frame the task as finding a few key frames from thousands, highlighting the limitations of current models. To address this, they propose T, a framework that reimagines temporal search as a spatial search using adaptive zoom-in techniques across time and space. T significantly boosts performance while reducing computational cost, improving the accuracy of models like GPT-4o and LLaVA-OV using far fewer frames.

    The study introduces a Temporal Search (TS) task to enhance video understanding in long-context visual language models. The goal is to select a minimal keyframe from a video that retains all information necessary to answer a given question. The proposed T framework performs this using three stages: question grounding, iterative temporal search, and task completion. It identifies relevant objects in the question, locates them across frames using a spatial search model, and updates a frame sampling strategy based on confidence scores. Evaluated on the LV-HAYSTACK benchmark, T shows improved efficiency and accuracy with significantly lower computational costs.

    The study evaluates the proposed T temporal search framework across multiple datasets and tasks, including LV-HAYSTACK, LongVideoBench, VideoMME, NExT-QA, EgoSchema, and Ego4D LongVideo QA. T is integrated into open-source and proprietary vision-language models, consistently improving performance, especially in long videos and limited frame scenarios. It uses attention, object detection, or trained models for efficient keyframe selection, achieving high accuracy with reduced computational cost. Experiments show that T progressively aligns sampling with relevant frames over iterations, approaches human-level performance with more frames, and significantly outperforms uniform and retrieval-based sampling methods across various evaluation benchmarks.

    In conclusion, the work tackles the challenge of understanding long-form videos by revisiting temporal search methods used in state-of-the-art VLMs. The authors frame the task as the “Long Video Haystack” problem—identifying a few relevant frames from tens of thousands. They introduce LV-HAYSTACK, a benchmark with 480 hours of video and over 15,000 human-annotated instances to support this. Findings show existing methods perform poorly. They propose T, a lightweight framework that transforms temporal search into a spatial problem using adaptive zooming techniques to address this. T significantly boosts the performance of leading VLMs under tight frame budgets, demonstrating its effectiveness.


    Check out the Paper and Project Page. All credit for this research goes to the researchers of this project. Also, feel free to follow us on Twitter and don’t forget to join our 85k+ ML SubReddit.

    🔥 [Register Now] miniCON Virtual Conference on OPEN SOURCE AI: FREE REGISTRATION + Certificate of Attendance + 3 Hour Short Event (April 12, 9 am- 12 pm PST) + Hands on Workshop [Sponsored]

    The post T* and LV-Haystack: A Spatially-Guided Temporal Search Framework for Efficient Long-Form Video Understanding appeared first on MarkTechPost.

    Source: Read More 

    Facebook Twitter Reddit Email Copy Link
    Previous ArticleByteDance Introduces VAPO: A Novel Reinforcement Learning Framework for Advanced Reasoning Tasks
    Next Article Pixtral Large is now available in Amazon Bedrock

    Related Posts

    Machine Learning

    How to Evaluate Jailbreak Methods: A Case Study with the StrongREJECT Benchmark

    July 22, 2025
    Machine Learning

    Boolformer: Symbolic Regression of Logic Functions with Transformers

    July 22, 2025
    Leave A Reply Cancel Reply

    For security, use of Google's reCAPTCHA service is required which is subject to the Google Privacy Policy and Terms of Use.

    Continue Reading

    Build an Intelligent Multi-Tool AI Agent Interface Using Streamlit for Seamless Real-Time Interaction

    Machine Learning

    Laravel Spatie PDF Package: Generate Invoice with Images and CSS

    Development

    10+ Best Text Animation Presets & Templates for Premiere Pro

    Learning Resources

    I still hate the new Outlook, but it’s more tolerable after this update

    News & Updates

    Highlights

    CVE-2025-53935 – WeGIA Reflected Cross-Site Scripting (XSS)

    July 16, 2025

    CVE ID : CVE-2025-53935

    Published : July 16, 2025, 4:15 p.m. | 2 hours, 28 minutes ago

    Description : WeGIA is an open source web manager with a focus on the Portuguese language and charitable institutions. A Reflected Cross-Site Scripting (XSS) vulnerability was identified in the `personalizacao_selecao.php` endpoint of the WeGIA application prior to version 3.4.5. This vulnerability allows attackers to inject malicious scripts in the `id` parameter. Version 3.4.5 fixes the issue.

    Severity: 0.0 | NA

    Visit the link for more details, such as CVSS details, affected products, timeline, and more…

    CVE-2025-45855 – Erupt Elevation of Privilege (Arbitrary Code Execution)

    June 3, 2025

    Multiple SonicWall SMA 100 Vulnerabilities Let Attackers Compromise Systems

    May 8, 2025

    Sony’s Bend Studio Confirms Layoffs as It Gears Up for New Game

    June 12, 2025
    © DevStackTips 2025. All rights reserved.
    • Contact
    • Privacy Policy

    Type above and press Enter to search. Press Esc to cancel.