Close Menu
    DevStackTipsDevStackTips
    • Home
    • News & Updates
      1. Tech & Work
      2. View All

      CodeSOD: A Unique Way to Primary Key

      July 22, 2025

      BrowserStack launches Figma plugin for detecting accessibility issues in design phase

      July 22, 2025

      Parasoft brings agentic AI to service virtualization in latest release

      July 22, 2025

      Node.js vs. Python for Backend: 7 Reasons C-Level Leaders Choose Node.js Talent

      July 21, 2025

      The best CRM software with email marketing in 2025: Expert tested and reviewed

      July 22, 2025

      This multi-port car charger can power 4 gadgets at once – and it’s surprisingly cheap

      July 22, 2025

      I’m a wearables editor and here are the 7 Pixel Watch 4 rumors I’m most curious about

      July 22, 2025

      8 ways I quickly leveled up my Linux skills – and you can too

      July 22, 2025
    • Development
      1. Algorithms & Data Structures
      2. Artificial Intelligence
      3. Back-End Development
      4. Databases
      5. Front-End Development
      6. Libraries & Frameworks
      7. Machine Learning
      8. Security
      9. Software Engineering
      10. Tools & IDEs
      11. Web Design
      12. Web Development
      13. Web Security
      14. Programming Languages
        • PHP
        • JavaScript
      Featured

      The Intersection of Agile and Accessibility – A Series on Designing for Everyone

      July 22, 2025
      Recent

      The Intersection of Agile and Accessibility – A Series on Designing for Everyone

      July 22, 2025

      Zero Trust & Cybersecurity Mesh: Your Org’s Survival Guide

      July 22, 2025

      Execute Ping Commands and Get Back Structured Data in PHP

      July 22, 2025
    • Operating Systems
      1. Windows
      2. Linux
      3. macOS
      Featured

      A Tomb Raider composer has been jailed — His legacy overshadowed by $75k+ in loan fraud

      July 22, 2025
      Recent

      A Tomb Raider composer has been jailed — His legacy overshadowed by $75k+ in loan fraud

      July 22, 2025

      “I don’t think I changed his mind” — NVIDIA CEO comments on H20 AI GPU sales resuming in China following a meeting with President Trump

      July 22, 2025

      Galaxy Z Fold 7 review: Six years later — Samsung finally cracks the foldable code

      July 22, 2025
    • Learning Resources
      • Books
      • Cheatsheets
      • Tutorials & Guides
    Home»Development»Machine Learning»THUDM Releases GLM 4: A 32B Parameter Model Competing Head-to-Head with GPT-4o and DeepSeek-V3

    THUDM Releases GLM 4: A 32B Parameter Model Competing Head-to-Head with GPT-4o and DeepSeek-V3

    April 14, 2025

    In the rapidly evolving landscape of large language models (LLMs), researchers and organizations face significant challenges. These include enhancing reasoning abilities, providing robust multilingual support, and efficiently managing complex, open-ended tasks. Although smaller models are often more accessible and cost-effective, they typically fall short in performance when compared to their larger counterparts. Hence, there is a growing emphasis on developing mid-sized models that effectively balance computational efficiency with strong reasoning and instruction-following capabilities.

    The recent release of GLM 4 from Tsinghua University, particularly the GLM-Z1-32B-0414 variant, addresses these challenges effectively. Trained on a substantial dataset of 15 trillion tokens, GLM 4 is designed to offer reliable multilingual capabilities and incorporates innovative reasoning strategies referred to as “thinking mode.” This release positions GLM 4 alongside other notable models like DeepSeek Distill, QwQ, and O1-mini, and is distributed under the widely respected MIT license. Notably, despite its relatively moderate parameter size of 32 billion, GLM 4 demonstrates performance comparable to much larger models such as GPT-4o and DeepSeek-V3, which contain up to 671 billion parameters, particularly in reasoning-centric benchmarks.

    On a technical level, GLM-Z1-32B-0414 leverages extensive high-quality training data, including synthetically generated reasoning tasks, to strengthen analytical capabilities. The model integrates sophisticated techniques such as rejection sampling and reinforcement learning (RL) to improve performance in agent-based tasks, coding, function calling, and search-driven question-answering tasks. Additionally, its “Deep Reasoning Model” variation further refines this by employing cold-start methods combined with extended RL training, specifically targeted at complex mathematical, logical, and coding tasks. Pairwise ranking feedback mechanisms are employed during training to enhance the model’s general reasoning effectiveness.

    An advanced variant, GLM-Z1-Rumination-32B-0414, introduces a novel approach termed “rumination,” enabling prolonged reflective reasoning for tackling open-ended, complex queries like comparative AI-driven urban analysis. This variant integrates advanced search tools with multi-objective reinforcement learning, significantly enhancing its utility in research-intensive tasks and complex retrieval-based scenarios. Complementing these larger models, the GLM-Z1-9B-0414 version, with its 9 billion parameters, provides strong mathematical and general reasoning capabilities, demonstrating the practicality of smaller-scale models.

    Performance data from benchmark evaluations emphasize the strengths of the GLM 4 series. Specifically, GLM-4-32B-0414 shows robust results compared to GPT-4o, DeepSeek-V3, and Qwen2.5-Max across multiple benchmarks. On the IFEval instruction-following benchmark, GLM 4 scores an impressive 87.6. In task automation benchmarks such as TAU-Bench, GLM 4 achieves strong scores in scenarios like retail (68.7) and airline (51.2). For search-augmented question-answering tasks, as evaluated by SimpleQA, the model records a high score of 88.1. Additionally, GLM 4 closely matches GPT-4o’s performance in function-calling tasks evaluated by the BFCL-v3 benchmark, securing an overall score of 69.6. In practical code repair scenarios tested through SWE-bench with the Moatless framework, GLM 4 achieves a success rate of 33.8%, underscoring its practical value.

    In summary, GLM 4 presents itself as an effective family of language models, successfully bridging the performance gap between smaller, more accessible models and the traditionally superior larger-scale counterparts. The GLM-Z1 series, especially the 32B variant, exemplifies this balanced approach by providing powerful reasoning capabilities while maintaining computational affordability. With the added advantage of its permissive MIT license, GLM 4 is positioned as a robust tool for research and enterprise applications requiring high-performance AI solutions without the extensive computational overhead traditionally associated with larger models.


    Check out GLM-4-Z1-32B-0414 Model and Other Models. All credit for this research goes to the researchers of this project. Also, feel free to follow us on Twitter and don’t forget to join our 90k+ ML SubReddit.

    The post THUDM Releases GLM 4: A 32B Parameter Model Competing Head-to-Head with GPT-4o and DeepSeek-V3 appeared first on MarkTechPost.

    Source: Read More 

    Facebook Twitter Reddit Email Copy Link
    Previous ArticleUbuntu MATE 25.04 Release Notes
    Next Article Multimodal Models Don’t Need Late Fusion: Apple Researchers Show Early-Fusion Architectures are more Scalable, Efficient, and Modality-Agnostic

    Related Posts

    Machine Learning

    How to Evaluate Jailbreak Methods: A Case Study with the StrongREJECT Benchmark

    July 22, 2025
    Machine Learning

    Boolformer: Symbolic Regression of Logic Functions with Transformers

    July 22, 2025
    Leave A Reply Cancel Reply

    For security, use of Google's reCAPTCHA service is required which is subject to the Google Privacy Policy and Terms of Use.

    Continue Reading

    How to Survive in Tech When Everything’s Changing w/ 21-year Veteran Dev Joe Attardi [Podcast #174]

    Development

    CISA Alert: Critical Flaws in Consilium Safety CS5000 Fire Panel Could Enable Remote Takeover, No Patch

    Security

    CVE-2025-49463 – Zoom iOS Network Information Disclosure Vulnerability

    Common Vulnerabilities and Exposures (CVEs)

    CVE-2025-20675 – Aruba WLAN STA Driver Uncaught Exception Vulnerability (Denial of Service)

    Common Vulnerabilities and Exposures (CVEs)

    Highlights

    How to Hire Top AI Developers

    June 10, 2025

    This comprehensive guide will walk you through the process of hiring top AI developers for…

    CVE-2024-13808 – Xpro Elementor Addons – Pro WordPress Remote Code Execution Vulnerability

    April 26, 2025

    Rilasciati il driver OpenRazer 3.10.3 per dispositivi Razer compatibile con Linux 6.15

    May 9, 2025

    CVE-2025-5979 – Code-projects School Fees Payment System SQL Injection Vulnerability

    June 10, 2025
    © DevStackTips 2025. All rights reserved.
    • Contact
    • Privacy Policy

    Type above and press Enter to search. Press Esc to cancel.