Close Menu
    DevStackTipsDevStackTips
    • Home
    • News & Updates
      1. Tech & Work
      2. View All

      CodeSOD: A Unique Way to Primary Key

      July 22, 2025

      BrowserStack launches Figma plugin for detecting accessibility issues in design phase

      July 22, 2025

      Parasoft brings agentic AI to service virtualization in latest release

      July 22, 2025

      Node.js vs. Python for Backend: 7 Reasons C-Level Leaders Choose Node.js Talent

      July 21, 2025

      The best CRM software with email marketing in 2025: Expert tested and reviewed

      July 22, 2025

      This multi-port car charger can power 4 gadgets at once – and it’s surprisingly cheap

      July 22, 2025

      I’m a wearables editor and here are the 7 Pixel Watch 4 rumors I’m most curious about

      July 22, 2025

      8 ways I quickly leveled up my Linux skills – and you can too

      July 22, 2025
    • Development
      1. Algorithms & Data Structures
      2. Artificial Intelligence
      3. Back-End Development
      4. Databases
      5. Front-End Development
      6. Libraries & Frameworks
      7. Machine Learning
      8. Security
      9. Software Engineering
      10. Tools & IDEs
      11. Web Design
      12. Web Development
      13. Web Security
      14. Programming Languages
        • PHP
        • JavaScript
      Featured

      The Intersection of Agile and Accessibility – A Series on Designing for Everyone

      July 22, 2025
      Recent

      The Intersection of Agile and Accessibility – A Series on Designing for Everyone

      July 22, 2025

      Zero Trust & Cybersecurity Mesh: Your Org’s Survival Guide

      July 22, 2025

      Execute Ping Commands and Get Back Structured Data in PHP

      July 22, 2025
    • Operating Systems
      1. Windows
      2. Linux
      3. macOS
      Featured

      A Tomb Raider composer has been jailed — His legacy overshadowed by $75k+ in loan fraud

      July 22, 2025
      Recent

      A Tomb Raider composer has been jailed — His legacy overshadowed by $75k+ in loan fraud

      July 22, 2025

      “I don’t think I changed his mind” — NVIDIA CEO comments on H20 AI GPU sales resuming in China following a meeting with President Trump

      July 22, 2025

      Galaxy Z Fold 7 review: Six years later — Samsung finally cracks the foldable code

      July 22, 2025
    • Learning Resources
      • Books
      • Cheatsheets
      • Tutorials & Guides
    Home»Development»Machine Learning»RXTX: A Machine Learning-Guided Algorithm for Efficient Structured Matrix Multiplication

    RXTX: A Machine Learning-Guided Algorithm for Efficient Structured Matrix Multiplication

    May 22, 2025

    Discovering faster algorithms for matrix multiplication remains a key pursuit in computer science and numerical linear algebra. Since the pioneering contributions of Strassen and Winograd in the late 1960s, which showed that general matrix products could be computed with fewer multiplications than previously believed, various strategies have emerged. These include gradient-based methods, heuristic techniques, group-theoretic frameworks, graph-based random walks, and deep reinforcement learning. However, significantly less focus has been placed on matrix products with inherent structure, such as when the second matrix is the transpose or identical to the first, or when matrices possess sparsity or symmetry. This oversight is notable, given that expressions like AA^T appear frequently in domains such as statistics, deep learning, and communications, representing critical constructs like Gram and covariance matrices. Moreover, XX^T is repetitive in large language model training algorithms like Muon and Shampoo.

    Previous studies have explored structured matrix multiplication using various theoretical and machine learning-based methods. Representation theory and the Cohn–Umans framework have been employed to design efficient multiplication schemes for structured matrices. Reinforcement learning has also shown promise—models have learned to discover or rediscover known algorithms like Strassen’s. Recent work has focused on optimizing the computation of XX^T over finite fields and complex domains. Among these, the most efficient known method for real-valued XX^T is Strassen’s algorithm, who apply Strassen’s algorithm recursively on 2×2 block matrices, effectively translating the structured problem back into the domain of general matrix multiplication. 

    Researchers from the Chinese University and the Shenzhen Research Institute of Big Data have developed RXTX, an algorithm for efficiently computing XX^T where X belongs to R^n*m. RXTX reduces the number of required operations—multiplications and additions—by approximately 5% compared to the current leading methods. Unlike many algorithms that only show benefits for large matrices, RXTX delivers improvements even for small sizes (e.g., n = 4). The algorithm was discovered through machine learning-based search and combinatorial optimization, leveraging the specific structure of XX^T for constant-factor acceleration. 

    The RXTX algorithm improves matrix multiplication by reducing the number of operations compared to previous methods like recursive Strassen and Strassen-Winograd. It uses 26 general matrix multiplications and optimized addition schemes, resulting in fewer total operations. Theoretical analysis shows RXTX performs fewer multiplications and combined operations, especially for larger matrices. Practical tests on 6144 × 6144 matrices using a single-thread CPU show RXTX is about 9% faster than standard BLAS routines, with speedups observed in 99% of runs. These results highlight RXTX’s efficiency for large-scale symmetric matrix products and its advantage over traditional and state-of-the-art recursive algorithms. 

    The proposed methodology integrates RL with a two-tier Mixed Integer Linear Programming (MILP) pipeline to discover efficient matrix multiplication algorithms, particularly for computing XX^T. The RL-guided Large Neighborhood Search generates a large set of potential rank-1 bilinear products, which are candidate expressions. MILP-A explores all linear combinations of these products to express the target outputs, while MILP-B identifies the smallest subset that can represent all targets. This setup mirrors the AlphaTensor approach but simplifies it by reducing the action space significantly, focusing on lower-dimensional tensor products and leveraging MILP solvers like Gurobi for rapid computation.

    For example, to compute XX^T for a 2×2 matrix X, the goal is to derive expressions like x_1^2 + x_2^2 or x_1x_3 + x_2x_4. The RL policy randoMLy samples thousands of bilinear products using coefficients from {−1, 0, +1}. MILP-A finds combinations of these products that match the desired expressions, and MILP-B selects the fewest needed to cover all targets. This framework enabled the discovery of RXTX, an algorithm that performs 5% fewer multiplications and overall operations than prior methods. RXTX is efficient for large and small matrices and demonstrates a successful fusion of ML-based search and combinatorial optimization. 


    Check out the Paper. All credit for this research goes to the researchers of this project. Also, feel free to follow us on Twitter and don’t forget to join our 95k+ ML SubReddit and Subscribe to our Newsletter.

    The post RXTX: A Machine Learning-Guided Algorithm for Efficient Structured Matrix Multiplication appeared first on MarkTechPost.

    Source: Read More 

    Facebook Twitter Reddit Email Copy Link
    Previous ArticleGoogle DeepMind Releases Gemma 3n: A Compact, High-Efficiency Multimodal AI Model for Real-Time On-Device Use
    Next Article From Protocol to Production: How Model Context Protocol (MCP) Gateways Enable Secure, Scalable, and Seamless AI Integrations Across Enterprises

    Related Posts

    Machine Learning

    How to Evaluate Jailbreak Methods: A Case Study with the StrongREJECT Benchmark

    July 22, 2025
    Machine Learning

    Boolformer: Symbolic Regression of Logic Functions with Transformers

    July 22, 2025
    Leave A Reply Cancel Reply

    For security, use of Google's reCAPTCHA service is required which is subject to the Google Privacy Policy and Terms of Use.

    Continue Reading

    Critical Security Vulnerabilities in the Model Context Protocol (MCP): How Malicious Tools and Deceptive Contexts Exploit AI Agents

    Machine Learning

    CVE-2025-49124 – Apache Tomcat Windows Untrusted Search Path Vulnerability

    Common Vulnerabilities and Exposures (CVEs)

    How to Debug CI/CD Pipelines: A Handbook on Troubleshooting with Observability Tools

    Development

    This rugged smartphone has a highly-functional feature that made my iPhone look bad

    News & Updates

    Highlights

    CVE-2025-47683 – Florent Maillefaud WP Maintenance Object Injection Vulnerability

    May 7, 2025

    CVE ID : CVE-2025-47683

    Published : May 7, 2025, 3:16 p.m. | 20 minutes ago

    Description : Deserialization of Untrusted Data vulnerability in Florent Maillefaud WP Maintenance allows Object Injection. This issue affects WP Maintenance: from n/a through 6.1.9.7.

    Severity: 7.2 | HIGH

    Visit the link for more details, such as CVSS details, affected products, timeline, and more…

    CVE-2025-47670 – miniOrange WordPress Social Login and Register PHP Remote File Inclusion Vulnerability

    May 27, 2025

    Human-centric AI delivered at scale is the NiCE approach to CX

    June 24, 2025

    Amazon just confirmed its July Prime Day sale will be back, despite looming tariffs

    April 29, 2025
    © DevStackTips 2025. All rights reserved.
    • Contact
    • Privacy Policy

    Type above and press Enter to search. Press Esc to cancel.