Close Menu
    DevStackTipsDevStackTips
    • Home
    • News & Updates
      1. Tech & Work
      2. View All

      CodeSOD: A Unique Way to Primary Key

      July 22, 2025

      BrowserStack launches Figma plugin for detecting accessibility issues in design phase

      July 22, 2025

      Parasoft brings agentic AI to service virtualization in latest release

      July 22, 2025

      Node.js vs. Python for Backend: 7 Reasons C-Level Leaders Choose Node.js Talent

      July 21, 2025

      The best CRM software with email marketing in 2025: Expert tested and reviewed

      July 22, 2025

      This multi-port car charger can power 4 gadgets at once – and it’s surprisingly cheap

      July 22, 2025

      I’m a wearables editor and here are the 7 Pixel Watch 4 rumors I’m most curious about

      July 22, 2025

      8 ways I quickly leveled up my Linux skills – and you can too

      July 22, 2025
    • Development
      1. Algorithms & Data Structures
      2. Artificial Intelligence
      3. Back-End Development
      4. Databases
      5. Front-End Development
      6. Libraries & Frameworks
      7. Machine Learning
      8. Security
      9. Software Engineering
      10. Tools & IDEs
      11. Web Design
      12. Web Development
      13. Web Security
      14. Programming Languages
        • PHP
        • JavaScript
      Featured

      The Intersection of Agile and Accessibility – A Series on Designing for Everyone

      July 22, 2025
      Recent

      The Intersection of Agile and Accessibility – A Series on Designing for Everyone

      July 22, 2025

      Zero Trust & Cybersecurity Mesh: Your Org’s Survival Guide

      July 22, 2025

      Execute Ping Commands and Get Back Structured Data in PHP

      July 22, 2025
    • Operating Systems
      1. Windows
      2. Linux
      3. macOS
      Featured

      A Tomb Raider composer has been jailed — His legacy overshadowed by $75k+ in loan fraud

      July 22, 2025
      Recent

      A Tomb Raider composer has been jailed — His legacy overshadowed by $75k+ in loan fraud

      July 22, 2025

      “I don’t think I changed his mind” — NVIDIA CEO comments on H20 AI GPU sales resuming in China following a meeting with President Trump

      July 22, 2025

      Galaxy Z Fold 7 review: Six years later — Samsung finally cracks the foldable code

      July 22, 2025
    • Learning Resources
      • Books
      • Cheatsheets
      • Tutorials & Guides
    Home»Development»Machine Learning»This AI Paper Introduces Differentiable MCMC Layers: A New AI Framework for Learning with Inexact Combinatorial Solvers in Neural Networks

    This AI Paper Introduces Differentiable MCMC Layers: A New AI Framework for Learning with Inexact Combinatorial Solvers in Neural Networks

    May 26, 2025

    Neural networks have long been powerful tools for handling complex data-driven tasks. Still, they often struggle to make discrete decisions under strict constraints, like routing vehicles or scheduling jobs. These discrete decision problems, commonly found in operations research, are computationally intensive and difficult to integrate into the smooth, continuous frameworks of neural networks. Such challenges limit the ability to combine learning-based models with combinatorial reasoning, creating a bottleneck in applications that demand both.

    A major issue arises when integrating discrete combinatorial solvers with gradient-based learning systems. Many combinatorial problems are NP-hard, meaning it’s impossible to find exact solutions within a reasonable time for large instances. Existing strategies often depend on exact solvers or introduce continuous relaxations, which may not provide solutions that respect the hard constraints of the original problem. These approaches typically involve heavy computational costs, and when exact oracles are unavailable, the methods fail to deliver consistent gradients for learning. This creates a gap where neural networks can learn representations but cannot reliably make complex, structured decisions in a way that scales.

    Commonly used methods rely on exact solvers for structured inference tasks, such as MAP solvers in graphical models or linear programming relaxations. These methods often require repeated oracle calls during each training iteration and depend on specific problem formulations. Techniques like Fenchel-Young losses or perturbation-based methods allow approximate learning, but their guarantees break down when used with inexact solvers like local search heuristics. This reliance on exact solutions hinders their practical use in large-scale, real-world combinatorial tasks, such as vehicle routing with dynamic requests and time windows.

    Researchers from Google DeepMind and ENPC propose a novel solution by transforming local search heuristics into differentiable combinatorial layers through the lens of Markov Chain Monte Carlo (MCMC) methods. The researchers create MCMC layers that operate on discrete combinatorial spaces by mapping problem-specific neighborhood systems into proposal distributions. This design allows neural networks to integrate local search heuristics, like simulated annealing or Metropolis-Hastings, as part of the learning pipeline without access to exact solvers. Their approach enables gradient-based learning over discrete solutions by using acceptance rules that correct for the bias introduced by approximate solvers, ensuring theoretical soundness while reducing the computational burden.

    In more detail, the researchers construct a framework where local search heuristics propose neighbor solutions based on the problem structure, and the acceptance rules from MCMC methods ensure these moves result in a valid sampling process over the solution space. The resulting MCMC layer approximates the target distribution of feasible solutions and provides unbiased gradients for a single iteration under a target-dependent Fenchel-Young loss. This makes it possible to perform learning even with minimal MCMC iterations, such as using a single sample per forward pass while maintaining theoretical convergence properties. By embedding this layer in a neural network, they can train models that predict parameters for combinatorial problems and improve solution quality over time.

    The research team evaluated this method on a large-scale dynamic vehicle routing problem with time windows, a complex, real-world combinatorial optimization task. They showed their approach could handle large instances efficiently, significantly outperforming perturbation-based methods under limited time budgets. For example, their MCMC layer achieved a test relative cost of 5.9% compared to anticipative baselines when using a heuristic-based initialization. In comparison, the perturbation-based method achieved 6.3% under the same conditions. Even at extremely low time budgets, such as a 1 ms time limit, their method outperformed perturbation methods by a large margin—achieving 7.8% relative cost versus 65.2% for perturbation-based approaches. They also demonstrated that initializing the MCMC chain with ground-truth solutions or heuristic-enhanced states improved learning efficiency and solution quality, especially when using a small number of MCMC iterations.

    This research demonstrates a principled way to integrate NP-hard combinatorial problems into neural networks without relying on exact solvers. The problem of combining learning with discrete decision-making is addressed by using MCMC layers constructed from local search heuristics, enabling theoretically sound, efficient training. The proposed method bridges the gap between deep learning and combinatorial optimization, providing a scalable and practical solution for complex tasks like vehicle routing.


    Check out the Paper. All credit for this research goes to the researchers of this project. Also, feel free to follow us on Twitter and don’t forget to join our 95k+ ML SubReddit and Subscribe to our Newsletter.

    The post This AI Paper Introduces Differentiable MCMC Layers: A New AI Framework for Learning with Inexact Combinatorial Solvers in Neural Networks appeared first on MarkTechPost.

    Source: Read More 

    Facebook Twitter Reddit Email Copy Link
    Previous ArticleCVE-2025-47637 – STAGGS Web Server Unrestricted File Upload RCE
    Next Article Better Than Man pages? These Tools Help You Understand Linux Commands

    Related Posts

    Machine Learning

    How to Evaluate Jailbreak Methods: A Case Study with the StrongREJECT Benchmark

    July 22, 2025
    Machine Learning

    Boolformer: Symbolic Regression of Logic Functions with Transformers

    July 22, 2025
    Leave A Reply Cancel Reply

    For security, use of Google's reCAPTCHA service is required which is subject to the Google Privacy Policy and Terms of Use.

    Continue Reading

    Kubernetes Networking: Services, Ingress and DNS Explained

    Learning Resources

    Azure AI just made GPT-4.1 fine-tuning faster and more accessible

    Operating Systems

    Xnec2c – graphical NEC2 antenna simulation

    Linux

    CVE-2025-48187 – RAGFlow Authentication Bypass

    Common Vulnerabilities and Exposures (CVEs)

    Highlights

    Critical Vulnerabilities in Quick Agent Software Expose Ricoh MFPs to Remote Attacks

    April 29, 2025

    Critical Vulnerabilities in Quick Agent Software Expose Ricoh MFPs to Remote Attacks

    The Japan Computer Emergency Response Team Coordination Center (JPCERT/CC) has issued an alert regarding multiple critical vulnerabilities found in Quick Agent, a Windows application developed by SIOS …
    Read more

    Published Date:
    Apr 29, 2025 (3 hours, 22 minutes ago)

    Vulnerabilities has been mentioned in this article.

    CVE-2025-31144

    CVE-2025-27937

    CVE-2025-26692

    CVE-2025-26506

    CVE-2024-47939

    CVE-2025-6516 – “HDF5 Heap-Based Buffer Overflow Vulnerability”

    June 23, 2025

    ether0: A 24B LLM Trained with Reinforcement Learning RL for Advanced Chemical Reasoning Tasks

    June 10, 2025

    AMD’s budget Ryzen AI 5 330 processor will introduce a wave of ultra-affordable Copilot+ PCs with its mobile 50 TOPS NPU

    July 17, 2025
    © DevStackTips 2025. All rights reserved.
    • Contact
    • Privacy Policy

    Type above and press Enter to search. Press Esc to cancel.