Close Menu
    DevStackTipsDevStackTips
    • Home
    • News & Updates
      1. Tech & Work
      2. View All

      CodeSOD: A Unique Way to Primary Key

      July 22, 2025

      BrowserStack launches Figma plugin for detecting accessibility issues in design phase

      July 22, 2025

      Parasoft brings agentic AI to service virtualization in latest release

      July 22, 2025

      Node.js vs. Python for Backend: 7 Reasons C-Level Leaders Choose Node.js Talent

      July 21, 2025

      The best CRM software with email marketing in 2025: Expert tested and reviewed

      July 22, 2025

      This multi-port car charger can power 4 gadgets at once – and it’s surprisingly cheap

      July 22, 2025

      I’m a wearables editor and here are the 7 Pixel Watch 4 rumors I’m most curious about

      July 22, 2025

      8 ways I quickly leveled up my Linux skills – and you can too

      July 22, 2025
    • Development
      1. Algorithms & Data Structures
      2. Artificial Intelligence
      3. Back-End Development
      4. Databases
      5. Front-End Development
      6. Libraries & Frameworks
      7. Machine Learning
      8. Security
      9. Software Engineering
      10. Tools & IDEs
      11. Web Design
      12. Web Development
      13. Web Security
      14. Programming Languages
        • PHP
        • JavaScript
      Featured

      The Intersection of Agile and Accessibility – A Series on Designing for Everyone

      July 22, 2025
      Recent

      The Intersection of Agile and Accessibility – A Series on Designing for Everyone

      July 22, 2025

      Zero Trust & Cybersecurity Mesh: Your Org’s Survival Guide

      July 22, 2025

      Execute Ping Commands and Get Back Structured Data in PHP

      July 22, 2025
    • Operating Systems
      1. Windows
      2. Linux
      3. macOS
      Featured

      A Tomb Raider composer has been jailed — His legacy overshadowed by $75k+ in loan fraud

      July 22, 2025
      Recent

      A Tomb Raider composer has been jailed — His legacy overshadowed by $75k+ in loan fraud

      July 22, 2025

      “I don’t think I changed his mind” — NVIDIA CEO comments on H20 AI GPU sales resuming in China following a meeting with President Trump

      July 22, 2025

      Galaxy Z Fold 7 review: Six years later — Samsung finally cracks the foldable code

      July 22, 2025
    • Learning Resources
      • Books
      • Cheatsheets
      • Tutorials & Guides
    Home»Development»Machine Learning»National University of Singapore Researchers Introduce Dimple: A Discrete Diffusion Multimodal Language Model for Efficient and Controllable Text Generation

    National University of Singapore Researchers Introduce Dimple: A Discrete Diffusion Multimodal Language Model for Efficient and Controllable Text Generation

    May 29, 2025

    In recent months, there has been growing interest in applying diffusion models—originally designed for continuous data, such as images—to natural language processing tasks. This has led to the development of Discrete Diffusion Language Models (DLMs), which treat text generation as a denoising process. Unlike traditional autoregressive models, DLMs enable parallel decoding and provide better control over structure, offering advantages such as flexible initialization of entire sequences, explicit control over output format, and improved infilling through bidirectional attention. Furthermore, their non-sequential nature opens the door to faster generation. Despite these benefits, most current multimodal large language models (MLLMs)—such as LLaMA, Qwen-VL, and InternVL—still rely solely on autoregressive methods.

    Work in diffusion-based language models has explored both continuous and discrete diffusion spaces. Continuous approaches, such as DiffuSeq and SED, use embedding or relaxed categorical spaces for smoother generation. In contrast, discrete models like SDDM and RDM tailor the diffusion process to linguistic structures. Training techniques vary, but commonly use masked language modeling losses or entropy-based score matching. Some hybrid models, such as AR-Diffusion and SSD-LM, combine autoregressive and diffusion strategies to leverage the strengths of both approaches. Meanwhile, open-source MLLMs such as LLaVA and InternVL have advanced through visual instruction tuning and joint pretraining, yet still follow an autoregressive generation scheme. 

    Researchers at the National University of Singapore present Dimple, the first Discrete DMLLM, which integrates a vision encoder with a discrete diffusion-based language model. To overcome the instability and performance issues of purely diffusion-based training, they introduce a two-phase training method—Autoregressive-then-Diffusion—combining initial autoregressive alignment with subsequent diffusion-based masked language modeling. Dimple-7B surpasses LLaVA-NEXT by 3.9% on benchmarks. The team also introduces Confident Decoding for dynamic token generation and explores Structure Priors for precise control over output. These innovations significantly improve inference efficiency, generation flexibility, and structural controllability without sacrificing performance. 

    Dimple is a Discrete Diffusion Multimodal LLM that integrates a vision encoder with a diffusion-based language model. To address inefficiencies in diffusion training, such as sparse supervision and limited generation coverage, the model is trained in two phases: first with autoregressive training using a causal attention mask for vision-language alignment, then with diffusion training to restore generation capabilities. During inference, a dynamic “Confident Decoding” strategy adapts token updates based on prediction confidence. Despite using significantly fewer training samples, Dimple exhibits competitive performance on multiple benchmarks, outperforming similar-scale autoregressive models, although it trails behind larger-scale state-of-the-art systems. 

    The experiments evaluate Dimple, a DMLLM, against autoregressive models on instruction-following tasks. Dimple, trained with a hybrid strategy that combines autoregressive and diffusion tuning, exhibits strong performance, surpassing models with similar training data on most benchmarks. Although it lags behind models trained on much larger datasets, Dimple benefits from a stronger base language model. Ablation studies reveal that combining autoregressive and diffusion tuning mitigates issues like length bias and improves consistency. Prefilling further boosts inference speed significantly, with only minor performance drops, making the model both efficient and competitive in multimodal understanding tasks. 

    In conclusion, Dimple, the first DMLLM, is designed to overcome the limitations of purely discrete diffusion training, such as instability and length bias. Dimple employs a hybrid training approach that starts with autoregressive learning, followed by diffusion tuning, yielding the Dimple-7B model, which outperforms LLaVA-NEXT by 3.9%. A decoding strategy, confident decoding, significantly reduces inference steps, while prefilling improves speed with minimal performance trade-offs. Dimple also enables structured and controllable outputs through structure priors, offering fine-grained control over format and length capabilities that autoregressive models struggle to provide. 


    Check out the Paper, Model on Hugging Face and GitHub Page. All credit for this research goes to the researchers of this project. Also, feel free to follow us on Twitter and don’t forget to join our 95k+ ML SubReddit and Subscribe to our Newsletter.

    The post National University of Singapore Researchers Introduce Dimple: A Discrete Diffusion Multimodal Language Model for Efficient and Controllable Text Generation appeared first on MarkTechPost.

    Source: Read More 

    Facebook Twitter Reddit Email Copy Link
    Previous ArticleThis AI Paper Introduces WEB-SHEPHERD: A Process Reward Model for Web Agents with 40K Dataset and 10× Cost Efficiency
    Next Article The Future of AI-Generated Design: From Architecture to Advertising🎨

    Related Posts

    Machine Learning

    How to Evaluate Jailbreak Methods: A Case Study with the StrongREJECT Benchmark

    July 22, 2025
    Machine Learning

    Boolformer: Symbolic Regression of Logic Functions with Transformers

    July 22, 2025
    Leave A Reply Cancel Reply

    For security, use of Google's reCAPTCHA service is required which is subject to the Google Privacy Policy and Terms of Use.

    Continue Reading

    Amazon Gaming Week 2025

    News & Updates

    DOOM: The Dark Ages reaches 3 million players 7x faster than DOOM: Eternal

    News & Updates

    CVE-2025-27528 – Apache InLong Deserialization of Untrusted Data Remote File Read Vulnerability

    Common Vulnerabilities and Exposures (CVEs)

    EmptyEpsilon – spaceship bridge simulator game

    Linux

    Highlights

    Machine Learning

    THUDM Releases GLM 4: A 32B Parameter Model Competing Head-to-Head with GPT-4o and DeepSeek-V3

    April 14, 2025

    In the rapidly evolving landscape of large language models (LLMs), researchers and organizations face significant…

    I played Capcom’s Pragmata, and it’s not what you expect

    June 12, 2025

    CVE-2025-6463 – Forminator Forms – WordPress Remote Code Execution via File Deletion

    July 2, 2025

    CVE-2025-6499 – Apache vstakhov libucl Heap-Based Buffer Overflow

    June 23, 2025
    © DevStackTips 2025. All rights reserved.
    • Contact
    • Privacy Policy

    Type above and press Enter to search. Press Esc to cancel.