Close Menu
    DevStackTipsDevStackTips
    • Home
    • News & Updates
      1. Tech & Work
      2. View All

      CodeSOD: A Unique Way to Primary Key

      July 22, 2025

      BrowserStack launches Figma plugin for detecting accessibility issues in design phase

      July 22, 2025

      Parasoft brings agentic AI to service virtualization in latest release

      July 22, 2025

      Node.js vs. Python for Backend: 7 Reasons C-Level Leaders Choose Node.js Talent

      July 21, 2025

      The best CRM software with email marketing in 2025: Expert tested and reviewed

      July 22, 2025

      This multi-port car charger can power 4 gadgets at once – and it’s surprisingly cheap

      July 22, 2025

      I’m a wearables editor and here are the 7 Pixel Watch 4 rumors I’m most curious about

      July 22, 2025

      8 ways I quickly leveled up my Linux skills – and you can too

      July 22, 2025
    • Development
      1. Algorithms & Data Structures
      2. Artificial Intelligence
      3. Back-End Development
      4. Databases
      5. Front-End Development
      6. Libraries & Frameworks
      7. Machine Learning
      8. Security
      9. Software Engineering
      10. Tools & IDEs
      11. Web Design
      12. Web Development
      13. Web Security
      14. Programming Languages
        • PHP
        • JavaScript
      Featured

      The Intersection of Agile and Accessibility – A Series on Designing for Everyone

      July 22, 2025
      Recent

      The Intersection of Agile and Accessibility – A Series on Designing for Everyone

      July 22, 2025

      Zero Trust & Cybersecurity Mesh: Your Org’s Survival Guide

      July 22, 2025

      Execute Ping Commands and Get Back Structured Data in PHP

      July 22, 2025
    • Operating Systems
      1. Windows
      2. Linux
      3. macOS
      Featured

      A Tomb Raider composer has been jailed — His legacy overshadowed by $75k+ in loan fraud

      July 22, 2025
      Recent

      A Tomb Raider composer has been jailed — His legacy overshadowed by $75k+ in loan fraud

      July 22, 2025

      “I don’t think I changed his mind” — NVIDIA CEO comments on H20 AI GPU sales resuming in China following a meeting with President Trump

      July 22, 2025

      Galaxy Z Fold 7 review: Six years later — Samsung finally cracks the foldable code

      July 22, 2025
    • Learning Resources
      • Books
      • Cheatsheets
      • Tutorials & Guides
    Home»Development»Machine Learning»MemOS: A Memory-Centric Operating System for Evolving and Adaptive Large Language Models

    MemOS: A Memory-Centric Operating System for Evolving and Adaptive Large Language Models

    June 14, 2025

    LLMs are increasingly seen as key to achieving Artificial General Intelligence (AGI), but they face major limitations in how they handle memory. Most LLMs rely on fixed knowledge stored in their weights and short-lived context during use, making it hard to retain or update information over time. Techniques like RAG attempt to incorporate external knowledge but lack structured memory management. This leads to problems such as forgetting past conversations, poor adaptability, and isolated memory across platforms. Fundamentally, today’s LLMs don’t treat memory as a manageable, persistent, or sharable system, limiting their real-world usefulness. 

    To address the limitations of memory in current LLMs, researchers from MemTensor (Shanghai) Technology Co., Ltd., Shanghai Jiao Tong University, Renmin University of China, and the Research Institute of China Telecom have developed MemO. This memory operating system makes memory a first-class resource in language models. At its core is MemCube, a unified memory abstraction that manages parametric, activation, and plaintext memory. MemOS enables structured, traceable, and cross-task memory handling, allowing models to adapt continuously, internalize user preferences, and maintain behavioral consistency. This shift transforms LLMs from passive generators into evolving systems capable of long-term learning and cross-platform coordination. 

    As AI systems grow more complex—handling multiple tasks, roles, and data types—language models must evolve beyond understanding text to also retaining memory and learning continuously. Current LLMs lack structured memory management, which limits their ability to adapt and grow over time. MemOS, a new system that treats memory as a core, schedulable resource. It enables long-term learning through structured storage, version control, and unified memory access. Unlike traditional training, MemOS supports a continuous “memory training” paradigm that blurs the line between learning and inference. It also emphasizes governance, ensuring traceability, access control, and safe use in evolving AI systems. 

    MemOS is a memory-centric operating system for language models that treats memory not just as stored data but as an active, evolving component of the model’s cognition. It organizes memory into three distinct types: Parametric Memory (knowledge baked into model weights via pretraining or fine-tuning), Activation Memory (temporary internal states, such as KV caches and attention patterns, used during inference), and Plaintext Memory (editable, retrievable external data, like documents or prompts). These memory types interact within a unified framework called the MemoryCube (MemCube), which encapsulates both content and metadata, allowing dynamic scheduling, versioning, access control, and transformation across types. This structured system enables LLMs to adapt, recall relevant information, and efficiently evolve their capabilities, transforming them into more than just static generators.

    At the core of MemOS is a three-layer architecture: the Interface Layer handles user inputs and parses them into memory-related tasks; the Operation Layer manages the scheduling, organization, and evolution of different types of memory; and the Infrastructure Layer ensures safe storage, access governance, and cross-agent collaboration. All interactions within the system are mediated through MemCubes, allowing traceable, policy-driven memory operations. Through modules like MemScheduler, MemLifecycle, and MemGovernance, MemOS maintains a continuous and adaptive memory loop—from the moment a user sends a prompt, to memory injection during reasoning, to storing useful data for future use. This design not only enhances the model’s responsiveness and personalization but also ensures that memory remains structured, secure, and reusable. 

    In conclusion, MemOS is a memory operating system designed to make memory a central, manageable component in LLMs. Unlike traditional models that depend mostly on static model weights and short-term runtime states, MemOS introduces a unified framework for handling parametric, activation, and plaintext memory. At its core is MemCube, a standardized memory unit that supports structured storage, lifecycle management, and task-aware memory augmentation. The system enables more coherent reasoning, adaptability, and cross-agent collaboration. Future goals include enabling memory sharing across models, self-evolving memory blocks, and building a decentralized memory marketplace to support continual learning and intelligent evolution. 


    Check out the Paper. All credit for this research goes to the researchers of this project. Also, feel free to follow us on Twitter and don’t forget to join our 100k+ ML SubReddit and Subscribe to our Newsletter.

    The post MemOS: A Memory-Centric Operating System for Evolving and Adaptive Large Language Models appeared first on MarkTechPost.

    Source: Read More 

    Facebook Twitter Reddit Email Copy Link
    Previous ArticleInternal Coherence Maximization (ICM): A Label-Free, Unsupervised Training Framework for LLMs
    Next Article Best of 2025 | Hotel Operations Solution in Singapore

    Related Posts

    Machine Learning

    How to Evaluate Jailbreak Methods: A Case Study with the StrongREJECT Benchmark

    July 22, 2025
    Machine Learning

    Boolformer: Symbolic Regression of Logic Functions with Transformers

    July 22, 2025
    Leave A Reply Cancel Reply

    For security, use of Google's reCAPTCHA service is required which is subject to the Google Privacy Policy and Terms of Use.

    Continue Reading

    CVE-2025-48890 – Western Digital WRH-733 Miniigd OS Command Injection

    Common Vulnerabilities and Exposures (CVEs)

    Tiny Models, Big Reasoning Gains: USC Researchers Introduce Tina for Cost-Effective Reinforcement Learning with LoRA

    Machine Learning

    Best early Prime Day TV deals: My 17 favorite sales live now

    News & Updates

    OpenAI’s most impressive move has nothing to do with AI

    News & Updates

    Highlights

    FBI: Play ransomware breached 900 victims, including critical orgs

    June 4, 2025

    FBI: Play ransomware breached 900 victims, including critical orgs

    In an update to a joint advisory with CISA and the Australian Cyber Security Centre, the FBI said that the Play ransomware gang had breached roughly 900 organizations as of May 2025, three times the n …
    Read more

    Published Date:
    Jun 04, 2025 (3 hours, 36 minutes ago)

    Vulnerabilities has been mentioned in this article.

    CVE-2024-57728

    CVE-2024-57727

    CVE-2024-57726

    This AI Paper Introduces Differentiable MCMC Layers: A New AI Framework for Learning with Inexact Combinatorial Solvers in Neural Networks

    May 26, 2025

    Microsoft Open-Sources Windows Subsystem for Linux

    May 19, 2025

    Mac Mini won’t power on? Apple will fix it for you – for free

    June 16, 2025
    © DevStackTips 2025. All rights reserved.
    • Contact
    • Privacy Policy

    Type above and press Enter to search. Press Esc to cancel.