Close Menu
    DevStackTipsDevStackTips
    • Home
    • News & Updates
      1. Tech & Work
      2. View All

      CodeSOD: A Unique Way to Primary Key

      July 22, 2025

      BrowserStack launches Figma plugin for detecting accessibility issues in design phase

      July 22, 2025

      Parasoft brings agentic AI to service virtualization in latest release

      July 22, 2025

      Node.js vs. Python for Backend: 7 Reasons C-Level Leaders Choose Node.js Talent

      July 21, 2025

      The best CRM software with email marketing in 2025: Expert tested and reviewed

      July 22, 2025

      This multi-port car charger can power 4 gadgets at once – and it’s surprisingly cheap

      July 22, 2025

      I’m a wearables editor and here are the 7 Pixel Watch 4 rumors I’m most curious about

      July 22, 2025

      8 ways I quickly leveled up my Linux skills – and you can too

      July 22, 2025
    • Development
      1. Algorithms & Data Structures
      2. Artificial Intelligence
      3. Back-End Development
      4. Databases
      5. Front-End Development
      6. Libraries & Frameworks
      7. Machine Learning
      8. Security
      9. Software Engineering
      10. Tools & IDEs
      11. Web Design
      12. Web Development
      13. Web Security
      14. Programming Languages
        • PHP
        • JavaScript
      Featured

      The Intersection of Agile and Accessibility – A Series on Designing for Everyone

      July 22, 2025
      Recent

      The Intersection of Agile and Accessibility – A Series on Designing for Everyone

      July 22, 2025

      Zero Trust & Cybersecurity Mesh: Your Org’s Survival Guide

      July 22, 2025

      Execute Ping Commands and Get Back Structured Data in PHP

      July 22, 2025
    • Operating Systems
      1. Windows
      2. Linux
      3. macOS
      Featured

      A Tomb Raider composer has been jailed — His legacy overshadowed by $75k+ in loan fraud

      July 22, 2025
      Recent

      A Tomb Raider composer has been jailed — His legacy overshadowed by $75k+ in loan fraud

      July 22, 2025

      “I don’t think I changed his mind” — NVIDIA CEO comments on H20 AI GPU sales resuming in China following a meeting with President Trump

      July 22, 2025

      Galaxy Z Fold 7 review: Six years later — Samsung finally cracks the foldable code

      July 22, 2025
    • Learning Resources
      • Books
      • Cheatsheets
      • Tutorials & Guides
    Home»Development»Machine Learning»From Fine-Tuning to Prompt Engineering: Theory and Practice for Efficient Transformer Adaptation

    From Fine-Tuning to Prompt Engineering: Theory and Practice for Efficient Transformer Adaptation

    June 17, 2025

    The Challenge of Fine-Tuning Large Transformer Models

    Self-attention enables transformer models to capture long-range dependencies in text, which is crucial for comprehending complex language patterns. These models work efficiently with massive datasets and achieve remarkable performance without needing task-specific structures. As a result, they are widely applied across industries, including software development, education, and content generation.

    A key limitation in applying these powerful models is the reliance on supervised fine-tuning. Adapting a base transformer to a specific task typically involves retraining the model with labeled data, which demands significant computational resources, sometimes amounting to thousands of GPU hours. This presents a major barrier for organizations that lack access to such hardware or seek quicker adaptation times. Consequently, there is a pressing need for methods that can elicit task-specific capabilities from pre-trained transformers without modifying their parameters.

    Inference-Time Prompting as an Alternative to Fine-Tuning

    To address this issue, researchers have explored inference-time techniques that guide the model’s behavior using example-based inputs, bypassing the need for parameter updates. Among these methods, in-context learning has emerged as a practical approach where a model receives a sequence of input-output pairs to generate predictions for new inputs. Unlike traditional training, these techniques operate during inference, enabling the base model to exhibit desired behaviors solely based on context. Despite their promise, there has been limited formal proof to confirm that such techniques can consistently match fine-tuned performance.

    Theoretical Framework: Approximating Fine-Tuned Models via In-Context Learning

    Researchers from Patched Codes, Inc. introduced a method grounded in the Turing completeness of transformers, demonstrating that a base model can approximate the behavior of a fine-tuned model using in-context learning, provided sufficient computational resources and access to the original training dataset. Their theoretical framework offers a quantifiable approach to understanding how dataset size, context length, and task complexity influence the quality of the approximation. The analysis specifically examines two task types—text generation and linear classification—and establishes bounds on dataset requirements to achieve fine-tuned-like outputs with a defined error margin.

    Prompt Design and Theoretical Guarantees

    The method involves designing a prompt structure that concatenates a dataset of labeled examples with a target query. The model processes this sequence, drawing patterns from the examples to generate a response. For instance, a prompt could include input-output pairs like sentiment-labeled reviews, followed by a new review whose sentiment must be predicted. The researchers constructed this process as a simulation of a Turing machine, where self-attention mimics the tape state and feed-forward layers act as transition rules. They also formalized conditions under which the total variation distance between the base and fine-tuned output distributions remains within an acceptable error ε. The paper provides a construction for this inference technique and quantifies its theoretical performance.

    Quantitative Results: Dataset Size and Task Complexity

    The researchers provided performance guarantees based on dataset size and task type. For text generation tasks involving a vocabulary size V, the dataset must be of sizeOmVϵ2log1δ to ensure the base model approximates the fine-tuned model within an error ε across mmm contexts. When the output length is fixed at l, a smaller dataset of size Ol logVϵ2log1δ suffices. For linear classification tasks where the input has dimension d, the required dataset size becomes Odϵ, or with context constraints, O1ϵ2log1δ. These results are robust under idealized assumptions but also adapted to practical constraints like finite context length and partial dataset availability using techniques such as retrieval-augmented generation.

    Implications: Towards Efficient and Scalable NLP Models

    This research presents a detailed and well-structured argument demonstrating that inference-time prompting can closely match the capabilities of supervised fine-tuning, provided sufficient contextual data is supplied. It successfully identifies a path toward more resource-efficient deployment of large language models, presenting both a theoretical justification and practical techniques. The study demonstrates that leveraging a model’s latent capabilities through structured prompts is not just viable but scalable and highly effective for specific NLP tasks.


    Check out the Paper. All credit for this research goes to the researchers of this project. Also, feel free to follow us on Twitter and don’t forget to join our 100k+ ML SubReddit and Subscribe to our Newsletter.

    The post From Fine-Tuning to Prompt Engineering: Theory and Practice for Efficient Transformer Adaptation appeared first on MarkTechPost.

    Source: Read More 

    Facebook Twitter Reddit Email Copy Link
    Previous ArticleBuilding High-Performance Financial Analytics Pipelines with Polars: Lazy Evaluation, Advanced Expressions, and SQL Integration
    Next Article How Anomalo solves unstructured data quality issues to deliver trusted assets for AI with AWS

    Related Posts

    Machine Learning

    How to Evaluate Jailbreak Methods: A Case Study with the StrongREJECT Benchmark

    July 22, 2025
    Machine Learning

    Boolformer: Symbolic Regression of Logic Functions with Transformers

    July 22, 2025
    Leave A Reply Cancel Reply

    For security, use of Google's reCAPTCHA service is required which is subject to the Google Privacy Policy and Terms of Use.

    Continue Reading

    Iranian APT Group Breaches Middle Eastern Critical Infrastructure in Stealth Campaign

    Security

    Filament: Calculate/Show Age Based on Birth Date Field

    Development

    CVE-2025-48487 – FreeScout Flash Message Cross-Site Scripting (XSS) Vulnerability

    Common Vulnerabilities and Exposures (CVEs)

    Diablo 4 is collaborating with Berserk, bringing Kentaro Miura’s legendary manga series to the world of Sanctuary

    News & Updates

    Highlights

    CVE-2025-49576 – Citizen is a MediaWiki skin that makes extensions

    June 12, 2025

    CVE ID : CVE-2025-49576

    Published : June 12, 2025, 7:15 p.m. | 2 hours, 46 minutes ago

    Description : Citizen is a MediaWiki skin that makes extensions part of the cohesive experience. The citizen-search-noresults-title and citizen-search-noresults-desc system messages are inserted into raw HTML, allowing anybody who can edit those messages to insert arbitrary HTML into the DOM. This vulnerability is fixed in 3.3.1.

    Severity: 6.5 | MEDIUM

    Visit the link for more details, such as CVSS details, affected products, timeline, and more…

    June 2025 Patch Tuesday: One Zero-Day and Nine Critical Vulnerabilities Among 66 CVEs

    June 11, 2025

    7 clever iPhone USB-C port tricks every user should know

    June 2, 2025

    Discover Linux Mint 22: How Cinnamon Became the Sleek, Speedy Desktop Champion of 2025

    June 13, 2025
    © DevStackTips 2025. All rights reserved.
    • Contact
    • Privacy Policy

    Type above and press Enter to search. Press Esc to cancel.