Close Menu
    DevStackTipsDevStackTips
    • Home
    • News & Updates
      1. Tech & Work
      2. View All

      CodeSOD: A Unique Way to Primary Key

      July 22, 2025

      BrowserStack launches Figma plugin for detecting accessibility issues in design phase

      July 22, 2025

      Parasoft brings agentic AI to service virtualization in latest release

      July 22, 2025

      Node.js vs. Python for Backend: 7 Reasons C-Level Leaders Choose Node.js Talent

      July 21, 2025

      The best CRM software with email marketing in 2025: Expert tested and reviewed

      July 22, 2025

      This multi-port car charger can power 4 gadgets at once – and it’s surprisingly cheap

      July 22, 2025

      I’m a wearables editor and here are the 7 Pixel Watch 4 rumors I’m most curious about

      July 22, 2025

      8 ways I quickly leveled up my Linux skills – and you can too

      July 22, 2025
    • Development
      1. Algorithms & Data Structures
      2. Artificial Intelligence
      3. Back-End Development
      4. Databases
      5. Front-End Development
      6. Libraries & Frameworks
      7. Machine Learning
      8. Security
      9. Software Engineering
      10. Tools & IDEs
      11. Web Design
      12. Web Development
      13. Web Security
      14. Programming Languages
        • PHP
        • JavaScript
      Featured

      The Intersection of Agile and Accessibility – A Series on Designing for Everyone

      July 22, 2025
      Recent

      The Intersection of Agile and Accessibility – A Series on Designing for Everyone

      July 22, 2025

      Zero Trust & Cybersecurity Mesh: Your Org’s Survival Guide

      July 22, 2025

      Execute Ping Commands and Get Back Structured Data in PHP

      July 22, 2025
    • Operating Systems
      1. Windows
      2. Linux
      3. macOS
      Featured

      A Tomb Raider composer has been jailed — His legacy overshadowed by $75k+ in loan fraud

      July 22, 2025
      Recent

      A Tomb Raider composer has been jailed — His legacy overshadowed by $75k+ in loan fraud

      July 22, 2025

      “I don’t think I changed his mind” — NVIDIA CEO comments on H20 AI GPU sales resuming in China following a meeting with President Trump

      July 22, 2025

      Galaxy Z Fold 7 review: Six years later — Samsung finally cracks the foldable code

      July 22, 2025
    • Learning Resources
      • Books
      • Cheatsheets
      • Tutorials & Guides
    Home»Development»Trust but Verify: The Curious Case of AI Hallucinations

    Trust but Verify: The Curious Case of AI Hallucinations

    July 2, 2025

    AI is no longer the future; it is happening. Every other technology faces issues during its development phase, and AI is no exception. Have you ever asked an AI a question and received an answer that sounded perfectly confident, only to find out it was completely wrong? That is not a glitch; it is called hallucination in the world of AI.

    What Are AI Hallucinations?

    An AI hallucination occurs when a model produces content that seems accurate but is incorrect, fabricated, illogical, or nonsensical. The result might appear correct, but it’s simply not true, deviating from the fact.

    File 0000000009d461f7b254ed9fff3e8380

    Why do AI Hallucinations Occur?

    To understand AI hallucinations, we need to take a look under the hood at how these models are designed, trained, and deployed for customer use.

    • Language prediction, not reasoning: Certain generative AIs are just trained to predict the next word in a sentence based on patterns in massive text datasets.
    • No awareness: These models lack understanding, but they can only mimic.
    • Gaps in training data: If a model has not been exposed to sufficient reliable information, if the training data is biased, or if it has been trained with very limited data, the result may deviate from the actual truth.
    • Overconfidence: AI models are optimized for fluency and clarity, which can lead them to present wrong answers in an authoritative tone.

    Understand with a Real-World Example

    Let us consider the following example. Here, the user asks AI a question and receives a result, then rephrases the question to maintain the same meaning, but this time, AI generates a different answer in contradiction to the previous one. This inconsistency and lack of clarity lead to AI hallucination.

    The user asks, “Is Pluto a planet?”

    AI says, “Yes, Pluto is the 9th planet.”

    The user rephrases the question and asks again, and AI says, “No, Pluto is not a planet since it does not clear its orbital path of other debris.”

    Hal3

    AI can hallucinate in terms of fake citations on websites, books, legal or research documents, historical inaccuracies, visual errors in image generation, and contradictory responses, among other issues. In critical fields like banking, healthcare, law, or education, such hallucinations can be lethal.

    How to Spot an AI Hallucination

    • Check with external authentic sources: If something seems right but still triggers ambiguity, perform a fact-check with authenticated sources, either online or offline.
    • Look for vague claims, redundant content, or generic language. If the results are delivered with extreme confidence with oddly precise numbers, it could be a red flag.
    • Visit references: If an article or quote is cited, visit the referenced site personally to see if it exists.

    How to Mitigate AI Hallucinations

    Mitigating AI hallucination involves technical strategies, human oversight, and enhanced system design.

    Hal4

    Technical Strategies to Reduce AI Hallucinations

    1. Grounding in Reliable Sources

    • Involving RAG: It is known as the retrieval-augmented generation approach, used in LLM and NLP. Using this, the machine’s output can be optimized to utilize a retrieval system that refers to an authoritative knowledge data source before producing the result.
    • Using APIs: Build external APIs that can query verified external resources or any domain-specific resource in real-time and generate results.
    • Guardrails: Building safeguards and including refusal mechanisms when the model is unsure about the context. It can validate the output of the machine and make corrections.

    2. Fine-Tuning with Quality Data

    • We need to train and then fine-tune the model with an extensive amount of data. Fine-tuning the LLM model can enhance the machine’s performance.

    3. Prompt Engineering

    • Use properly crafted prompts to enable the model to interpret and understand them, generating factual results.

    Human Oversight Can Decrease AI Hallucinations

    1.    Fact-Checking

    • Keep humans in the loop for manually verifying the results generated by an AI model. This can help reduce any false information, which is highly critical in domains such as medical, legal, and financial.

    2. User Feedback Loops

    • Designing the model to get feedback from the users in terms of emojis, suggestions, comparison between two responses, etc.
    • Use reinforcement learning with human feedback (RLHF) to improve truthfulness.

    System Design Best Practices to Mitigate AI Hallucinations

    1.     Audit Trails

    • Transparency is key; all significant steps taken to design the model, including all sources and references, should be documented. This ensures compliance and accountability.

    2. Confidence Indicators

    • Show confidence scores or highlight potentially uncertain outputs to users. A confidence indicator is generally a score that indicates how specific the AI is of the result it has produced, based on which the user can decide whether to rely on or deny it.

    3.     Regular Evaluation

    • Continuously evaluate the model using hallucination tests on various datasets.

    4.     Use Domain-Specific Models

    • Smaller, domain-specific models trained on exclusive data that is authorized can perform well in terms of accuracy.

    Conclusion

    Fluency cannot be equated with accuracy. As powerful as these tools are, we still require human intervention to maintain their credibility and reliability. The next time you encounter an AI hallucination, be sure to fact-check and appreciate the intriguing complexity of machine-generated imagination.

    References

    Why IT needs a framework for responsible agentic AI – The Economic Times

    Reducing hallucinations in large language models with custom intervention using Amazon Bedrock Agents | Artificial Intelligence and Machine Learning

    Source: Read More 

    Facebook Twitter Reddit Email Copy Link
    Previous ArticleFrom Flow to Fabric: Connecting Power Automate to Microsoft Fabric
    Next Article Opera 120 brings built-in translation and smarter split screen

    Related Posts

    Development

    GPT-5 is Coming: Revolutionizing Software Testing

    July 22, 2025
    Development

    Win the Accessibility Game: Combining AI with Human Judgment

    July 22, 2025
    Leave A Reply Cancel Reply

    For security, use of Google's reCAPTCHA service is required which is subject to the Google Privacy Policy and Terms of Use.

    Continue Reading

    CVE-2025-3467 – Dify Firefox XSS Token Stealer

    Common Vulnerabilities and Exposures (CVEs)

    I tested these new Shokz clip-on earbuds, and they give Bose’s Ultra Open a run for their money

    News & Updates

    CVE-2025-0966 – IBM InfoSphere Information Server SQL Injection Vulnerability

    Common Vulnerabilities and Exposures (CVEs)

    A Comprehensive Coding Tutorial for Advanced SerpAPI Integration with Google Gemini-1.5-Flash for Advanced Analytics

    Machine Learning

    Highlights

    LitePub is a lightweight static blog generator

    June 9, 2025

    LitePub is a static blog generator that tries to be as easy to use as…

    Iran’s State TV Hijacked Mid-Broadcast Amid Geopolitical Tensions; $90M Stolen in Crypto Heist

    June 20, 2025

    CVE-2025-30476 – Dell PowerScale InsightIQ Remote Denial of Service Vulnerability

    May 15, 2025

    CVE-2025-3957 – Opplus Springboot-Admin SQL Injection Vulnerability

    April 27, 2025
    © DevStackTips 2025. All rights reserved.
    • Contact
    • Privacy Policy

    Type above and press Enter to search. Press Esc to cancel.